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Abstract: The task of computing composite indicators to define and analyze complex so-
cial, economic, political, or environmental phenomena has traditionally been the exclusive
competence of statistical offices. Nowadays, the availability of increasing volumes of data
and the emergence of the open data movement have enabled individuals and businesses
affordable access to all kinds of datasets that can be used as valuable input to compute in-
dicators. OpenStreetMap (OSM) is a good example of this. It has been used as a baseline to
compute indicators in areas where official data is scarce or difficult to access. Although the
extraction and application of OSM data to compute indicators is an attractive proposition,
this practice is by no means hassle-free. The use of OSM reveals a number of challenges
that are usually addressed with ad-hoc and often overlapping solutions. In this context,
this paper proposes MethOSM—a systematic methodology for computing indicators de-
rived from OSM data. By applying MethOSM, the computation task is divided into four
steps, with each step having a clear goal and a set of guidelines to apply. In this way, the
methodology contributes to an effective and efficient use of OSM data for the purpose of
computing indicators. To demonstrate its use, we apply MethOSM to a number of indica-
tors used for real estate valuation of properties in Italy.
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1 Introduction

Composite indicators (also known as composite indices) are widely used by policy-makers,
academics, media, and other interested parties as a tool to define and analyze complex
social, economic, political, or environmental phenomena, that cannot be directly measured
or easily defined. Composite indicators are formed by individual indicators, each of which
quantifies one specific aspect of the phenomenon at study.

Traditionally, national and international statistical offices employ composite indicators
for describing, comparing, and ranking various aspects of geographical areas related to
sustainable development, progress of society, social welfare, poverty and social inequality,
and provision of infrastructure. An overview of existing composite indicators measuring
human progress and well-being is provided in [43]. Examples include the Human Devel-
opment Index (HDI) and Multidimensional Poverty Index (MPI) proposed by United Na-
tions [22], and almost a hundred other composite indicators proposed by individuals and
research groups affiliated with international organizations, national governments, NGOs,
civil societies, private consultancies, and universities.

Other disciplines use composite indicators for territorial analysis, with recent examples
including the following. An overview of indicators and their usage in landscape research
to measure landscape structure and processes is presented in [41], together with biodiver-
sity and habitat analysis and evaluation of urban landscape patterns and road networks.
The Sensitivity Index of Agricultural Land proposed in [26] is an example of usage of com-
posite indicators to study processes of conversion from agricultural to urban land use. A
comparative analysis of composite indicators and methodologies developed to measure
the vulnerability, risk, or resilience of communities to disasters is provided in [7]. A ter-
racing intensity index to identify terraced areas of agricultural significance is proposed
in [1]. Composite measures of impact of social and ecological characteristics of territories
on mosquito distribution are proposed in [16]. The usage of a composite social welfare
index for Iran and Spain are presented in [23] and [44], respectively. A composite indicator
for scientific and technological research excellence is proposed in [21].

Combining individual indicators into a composite measure that accurately reflects real-
ity requires solid understanding of the phenomenon being measured. Meaningful selection
of individual indicators for a composite indicator is a challenging task by itself, and it can
be complicated by the absence of sources with relevant, up-to-date, and accurate data re-
quired for their computation. Indeed, due to the high costs and complexity associated with
collection and procurement of data, official sources may provide outdated, scarce, or overly
aggregated data. Moreover, getting access to official data sources can also be complicated
due to administrative or legal restrictions.

In the attempt to address the common pitfalls of authoritative data sources, researchers
started exploring sources of Volunteered Geographic Information (VGI) [18], free geo-
graphic information crowd-sourced through volunteer effort. Among those sources, Open-
StreetMap (OSM)1 has been recognized as “one of the most utilized, analyzed, and cited
VGI-platforms, with an increasing popularity over the past few years” [32].

Several scientific disciplines consider OSM as a potential alternative or ancillary source
to authoritative data [5] when computing composite indicators. For example, [38] demon-
strates the use of OSM data to compute an Urban-Rural Index (URI) that measures urban-
ization processes. Another example of using OSM data to refine existing techniques in the

1https://www.openstreetmap.org
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field of urban management and population mapping is presented in [6]. More recently, [27]
studied the completeness of sidewalk information in OSM with the purpose of determining
its fitness for use for routing and navigation application for people with limited mobility.
Such examples indicate that OSM has a great potential to facilitate research in the under-
lying disciplines. OSM data is up-to-date, free, and has global coverage. In the absence or
unavailability of similar data in official sources, OSM data can be an interesting alternative
or ancillary source of data. Moreover, the rich semantic annotation and fine-grained spatial
resolution of OSM data makes it beneficial for describing complex dynamic phenomena
through composite indicators.

Although OSM presents itself as a valuable data source in this context, its user-
generated nature means it suffers from data quality issues such as incompleteness, logi-
cal inconsistency, positional, temporal, and thematic inaccuracy [10, 12, 14, 19]. A wealth
of literature is available where researchers address OSM data quality issues from differ-
ent perspectives. One area of research is dedicated to assessment of OSM data qual-
ity by comparing it with authoritative data, such as data from National Mapping Agen-
cies [4, 13, 19, 25, 42]. Other works not only analyze OSM data quality but also propose
methodologies and software tools to enhance it (e.g., OSMatrix [35], OSM-based geocoding
engine [2], OSM Inspector2, KeepRight3, MapRoulette4, and MapDust5). Yet another area
of research investigates the evolution of OSM across the world over time and proposes the
use of historical analysis of OSM data editing to build data quality indicators [3, 30, 31, 33].

Existing studies of OSM data quality can help identify and resolve potential issues with
data quality when computing indicators from OSM data. However, no work currently ex-
ists to devise a systematic approach for extracting OSM data for the purpose of computing
indicators, and for identifying common steps to compute OSM-derived indicators, while
at the same time addressing issues with the quality of OSM data. Having it all together
in the form of a systematic methodology would facilitate the underlying process, making
the task of computing OSM-derived indicators more efficient and effective. In this paper,
we propose such a methodology—MethOSM—for computing OSM-derived indicators and
exemplify its applicability in computing indicators.

MethOSM’s primary target audience are individuals interested in computing indicators
using alternative geospatial data (OSM data in this particular case). Such individuals are
typically generic data scientists, not necessarily geospatial data experts, and could benefit
from the existence of methodological support in preparing the data for computation of the
indicators.

The rest of the paper is organized as follows. Section 2 presents relevant related works.
In Section 3 we provide a concrete example for computing OSM-derived indicators that
our methodology is aimed to support and discuss various challenges in this context. In
Section 4 we present and formalize MethOSM—our proposed methodology for computing
indicators. We exemplify the use of MethOSM in Section 5 where we analyze each indicator
in the driving example from Section 3 and show how the methodology applies to each of
them. Section 6 discusses the applicability of MethOSM for computing a complex indicator
for real estate property valuation in Italy as a way to validate MethOSM in a real business
case. We conclude the paper in Section 7.

2Available online at http://tools.geofabrik.de/osmi.
3Available online at http://keepright.ipax.at.
4Available online at http://maproulette.org.
5Available online at http://www.mapdust.com.
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2 Related works

As our paper concerns methodological aspects for computing OSM-derived indicators, the
literature review covers existing works related to computation of OSM-derived indices.
While primarily we consider manuscripts where OSM data is used for territorial analysis,
we also review studies of OSM data quality that compute indicators on top of OSM data to
identify, measure, and address its quality issues.

OSM-derived indicators for territorial analysis. A methodology to quantify the urban-
ization process (i.e., population migration from rural to urban areas) is proposed in [38],
where OSM data is used to complement remote sensing data. Two sub-indicators are
computed, each of which encodes accessibility of urban infrastructure from urban areas
in terms of travel times from/to the city centre. These sub-indicators are combined into
an Urban-Rural Index (URI) that defines accessibility of rural areas. To calculate each sub-
indicator, a process from downloading OSM lines to extracting road data to categorizing
the roads into three categories that define their average velocity is proposed.

Using OSM data for land use and population mapping is studied in [6]. The hypothesis
is that some types of points of interest can be correlated with a higher density of population.
Specifically, this work determines points of high population density via places that were
tagged on OSM as types potentially correlated with population density, such as schools,
supermarkets, churches, and others. These points can be used to complement existing
methods for areal interpolation of population estimates at building level.

The above mentioned works are closely related to ours in the sense that they utilize
OSM data to compute territorial indicators and touch upon methodological aspects of us-
ing OSM data. They emphasize the importance of reproducible quantitative methods in
the fields of urban development and human geography. Moreover, they show that OSM
data is a crucial ancillary ingredient in such quantitative methods, especially in developing
countries, where official sources are outdated and conventional satellite images lack proper
resolution and miss important semantic annotations. What makes these works different
from ours is that they focus on concrete domains (urban development and human geog-
raphy, respectively) and the methodological aspects are considered in an ad-hoc manner,
while our methodology is meant to be systematic and generalized to different domains.
Their methods and the data quality issues they report (such as low data coverage, spatial
and thematic inaccuracy of data on points of interest) are specific to urban development
and human geography domains. In our methodology we consider a broader scope of OSM
data quality issues and propose (and formalize) solution strategies that can potentially be
applied to address issues mentioned in such works.

OSM-derived indicators to study OSM data quality issues. There are several works in
the literature tackling OSM data quality issues. The majority of works reviewed in [5]
identify OSM data quality issues and investigate methods for addressing them. OSM data
quality in Portugal is analyzed in [15] by mapping OSM polygon features to the Corine
Land Cover reference database. Through this mapping issues related to semantics and
data heterogeneity are identified. A methodology to evaluate potential use of OSM data in
Brazil as input to official spatial databases is proposed in [11]. This methodology allows for
identification of rural and urban areas with incomplete data. A method to extract multi-
lane roads from OSM urban road networks is proposed in [24]. This method is specifically
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tailored to deal with quality issues of VGI, such as duplicated lines that represent roads,
tangles, broken roads, and singular angles. An urban network model that connects a pri-
vate transport system (pedestrian, bicycle, car), a public transport system (rail, metro, tram,
and bus), and a land use system is proposed in [17]. To address issues related to OSM data
quality and consistency for this urban network model, a complex heuristic to process rich
detailed description of street segments (duplicate features, overlapping segments, missing
segments, closed segments representing areas, and others) is implemented. The more re-
cent work in [39] reviewed data quality assessment methods in VGI, and touches also upon
OSM data quality issues. An ontology of data quality measures is proposed in [28] and is
applied using several examples of VGI, including OSM data. Finally, it is worth mention-
ing the software system described in [29], used to collect and process data about different
aspects of OSM.

The above mentioned studies tackle OSM data quality issues to some extent. Some
of them just identify the issues, others propose methods to overcome them. The work
presented in [17] comes closest to the methodology described in this paper, as it defines
specific heuristics to overcome OSM data quality issues. However, that work is different
from ours as it describes procedures for a specific problem, building multi-modal urban
network models, while our methodology is meant to take a broader perspective, be more
generic and applied to different problems. In the next section we discuss in more details
data quality challenges within the scope of MethOSM and do that also in relation to above
mentioned related works.

3 Motivating example: mass transport and green area indi-
cators in Turin

The aim of MethOSM is to assist in the computation of indicators derived from geographical
data. To describe the proposed methodology, we present a concrete case study that illus-
trates the challenges of working with a specific source: OpenStreetMap (OSM). In this case
study, we apply MethOSM to compute values for three indicators for the city of Turin in
Italy. The results obtained through the use of MethOSM are utilized to produce choropleth
visualizations that exemplify how these indicators can be used. The first two indicators are
related to mass transportation, scoring areas of the city based on the proximity to public
transport features: the number of nearby bus stops and the distance to the closest railway
station, respectively. The third indicator is the green area coverage: the percentage of an
area that is covered by vegetation.

These indicators are part of a more complex indicator used to objectively estimate the
value of real estate properties in Italy.6 Greater green area coverage and higher scores
for mass transportation define areas with more valuable properties. OSM was chosen as
an auxiliary source of contextual territorial information due to its availability, granular
representation, rich semantic annotation, and global coverage. In Section 5 we discuss the
computation of the three indicators for the city of Turin by applying MethOSM to each of
the indicators.

To compute values for an indicator within a city, we split the city into smaller areas to
which we will assign the scores. For the purpose of this paper, we use the standard census

6This indicator is discussed in more detail in Section 6.
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partition7. According to this partition, Turin consists of nearly 4,000 census cells. We will
take their geometries and use these alongside features in their surroundings to compute
the indicators.

Next, we need to gather data about the surroundings that describe public transport fea-
tures and green areas. We choose bus stops, railway stations, woods, parks, and gardens—
data available and easily accessible in OSM using the Overpass API8 and the query lan-
guage it provides. We will apply MethOSM to analyze this data and transform it such that
it can be used in the computation step that follows.

Finally, we have to decide how each indicator will be computed through a spatial rela-
tion between each census cell and its surroundings. In our example, the spatial relations
include: containment within a radius to count the number of nearby bus stops, minimum dis-
tance to train stations, and geometric intersection of green areas on census cells. These spatial
relations do not constitute an exhaustive list and are only referred here in relation to our
chosen example.

Figure 1 depicts the process of computing the green area coverage indicator. The ge-
ometries of census cells in the city are obtained from the Italian statistical office. These
constitute the input set. Next, we query OSM, our contextual set, for data describing the
surroundings. We take only data about woods, parks, and gardens. These features are
our points of interest, conveniently referred to as the POI set. Both the input and the POI
sets are related through geometric intersection to compute the indicator for each census cell.
Values for this indicator are used in Figure 1c, where cells with darker colours correspond
to greater green area coverage.

(a)

(b)

(c)
© OpenStreetMap contributors (http://www.openstreetmap.org/copyright) © Carto (https://carto.com/attributions)

Figure 1: Computing green area coverage for the city of Turin requires (a) the input set
with the city’s census cells and (b) a POI set with green area polygons to produce (c) a map
using the coverage ratio as the colouring variable.

Although Figure 1 describes a seemingly straightforward process, we will see in the
following sections that there are several challenges in extracting and using crowd-sourced
geographical data such as OSM. These challenges arise from the analysis of the contextual
dataset and can be classified as follows:

7Italian census cells: http://www.istat.it/it/archivio/sezione+di+censimento.
8https://wiki.openstreetmap.org/wiki/Overpass API
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• Discrepancy of taxonomies. This occurs when the alignment between the contex-
tual features described in the indicator and the representation of these features in the
dataset is not perfect. It may require iterating on query definitions until all needed
features are retrieved. Our driving example uses OSM and requires us to get informa-
tion about green areas. These are not directly represented in OSM as such. Instead,
OSM uses the concepts of parks and gardens. To bridge the gap in this case, we use
the Overpass API to retrieve a union of both sets.

• Variations in coverage, specificity, and richness. Data quality may vary from place
to place, possibly requiring the use of very different queries depending on the annota-
tion style used by the contributor. In OSM, some features are described only by name
(e.g., the harbor in Bari uses the key-value pair name=“Bacino della Stazione Marittima")
while in other cases features of the same type use more precise descriptions (e.g., the
harbor of Sampierdarena also contains the key-value pair harbour=yes).

• Duplicate entities. Crowd-sourced databases, due to their very nature, can contain
duplicate annotations about the same entity from different contributors. More of-
ten than not, there will be a need to deal with these repetitions before being able to
compute the indicator. A specific case in OSM are schools that use the key-value
pair amenity=school for individual entrances as well as for the area that represents the
school.

• Mixed representations for the same type of feature. The contextual dataset contains
more than one way of representing contextual features of the same type, in the same
location. Depending on the spatial relation used, this may require that all the features
are transformed to use the same representation. In our driving example, we find bus
stops being represented both as nodes and as ways in OSM, and substitute those
ways with their centroids to provide a uniform representation for the computation
function.

These challenges in the context of OSM are discussed to various degrees in the related
works on OSM data quality issues we mentioned in the previous section. While some
works develop solutions to these challenges, many of them discuss the challenges and
propose possible ways to resolve them as a future work. For example, [11] suggests that
variations in coverage can be addressed by issuing specific calls and motivating volunteers
for OSM data collection in areas where data coverage is scarce. A polygon-based method
to resolve duplicated lines for the same road features is developed in [24]. This method is
shown to be effective for extracting multi-lane roads from datasets with high level of detail
but of a low quality (such as OSM), with further improvements being proposed the gen-
eralization of dual-line roads into single lines and simplification of complex junctions into
single nodes. Discrepancy of taxonomies between OSM and the reference dataset Corine
Land Cover is discussed in [15], where, as a possible solution to fix this issue, a trust mech-
anism is suggested for contributors of specific classifications to help decide if one class can
be more reliable than the others, hence solving the conflict. [17] noticed that specificities in
names of OSM keys and values have to be analyzed and taken into consideration when de-
veloping queries for OSM data, and similarly, duplicate entities and mixed representation
for the same type of feature require individual study and human participation. Further, [17]
proposed an automated procedure to address such issues with OSM data and produce a
multi-modal urban network model representing a large region (while for building smaller
network models, one should consider identifying and correcting any additional problems
manually). Such specific strategies to address the above challenges are complementary to

JOSIS, Number 19 (2019), pp. 3–27
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the methodology we propose in this paper, however when and how to perform the anal-
ysis of the contextual set regarding each one of the above mentioned challenges is part
of MethOSM and will be detailed in the next section (while in Section 5 we perform this
analysis for the specific case of our driving example).

4 MethOSM: a methodology for computing OSM-derived
indicators

The computation of an indicator is achieved when a scoring function that realizes the seman-
tics of the indicator is evaluated. The MethOSM approach assumes that these semantics are
provided as an informal description which guides the analysis to identify certain elements.
These elements are then used to define the scoring function and evaluate it. Figure 2 depicts
the overall approach. Dark-coloured boxes to the left represent the a priori knowledge from
which the rest of the elements in the figure are determined. The arrows show three flows of
the analysis that allow for the determination of each element from elements to its left. The
execution of the methodology is complete when the rightmost element o, that is, the output
value of the scoring function, is determined.

Step 2:

Analyze NLDef

to obtain R and f

Step 1:

Analyze C to

determine its

properties

Step 3:

Clean R to obtain P

Step 4:

Apply f to relate g to P,

and compute the value

o of the indicator

Figure 2: MethOSM approach for computing indicators: grey boxes denote input elements
required by the approach while white boxes correspond to outputs resulting from the ap-
plication of the approach.

The a priori knowledge elements in Figure 2 are defined as follows:

• the geographical feature g for which the indicator will be computed,
• the contextual set C of all features that surround g, and
• the indicator’s natural language definition (NLDef ) that describes the indicator and

states how C and g are related.9

9In order for the methodology to be applicable, NLDef needs to include details about the spatial relations used
for computing the indicator. For example, to count the number of nearby bus stops, NLDef must also define what
is meant by “nearby,” e.g., “nearby” is defined as any Euclidean distance less than 500 meters.
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The methodology guides the analysis of NLDef to select, clean, and transform elements
in C. This is done in order to define a set P of points of interest containing only the elements
of C that are involved in the description of the indicator. In order to define P, it may be
necessary to perform a series of refining steps that operate on a raw subset of C.

This raw subset is represented by R, the raw POI set, and is defined by means of a query
function q that selects some elements of C. R is refined into R′, R′′ and so on, performing
tasks such as cleaning, deduplicating, and transforming to representations that are required
by a scoring function f to determine the value of the indicator. Function f is defined from
the relation described in NLDef between g and C.

MethOSM performs this process of finding P and f from the informal description
NLDef in a series of steps that are introduced below.

Step 1: analysis of the contextual set. Before attempting specific tasks related to a partic-
ular indicator, it is important to identify potential challenges that can arise from working
with the contextual set. The analysis in terms of these challenges will guide decisions taken
in steps further down the line for all tasks dealing with the contextual set. A typical set of
challenges include:

A Discrepancy of taxonomies between the contextual set and the indicator defini-
tion. A geographical indicator describes something about an entity in relation to
its surroundings. To gather the input needed from these surroundings, the whole
contextual set is queried to retrieve only features that are relevant according to the
definition of the indicator. In some cases, there is a trivial translation of what is de-
scribed in NLDef into queries to the contextual set. In most cases the alignment is not
perfect: taxonomies are different and a non-trivial mapping is needed to reconcile
these differences.

B Variations in coverage, specificity, and richness of annotations. Contextual sets of-
ten present great variability in annotation quality. Sometimes this variability is seen
by comparing one location to another for the same type of feature. Other times the
differences are seen across types of features. In both cases, completeness, accuracy,
and richness depend heavily on the community of annotators and the methodology
employed.

C Duplicate entities. The contextual set may contain duplicates (e.g., due to contrib-
utors repeatedly using tags on sub-entities rather than on the main entity—see Sec-
tion 3 for a specific example). An analysis of the different cases of duplication must be
performed to determine which strategies can be applied (e.g., deduplicate whenever
there is an overlap or if features are closer than a certain distance).

D Mixed representations for the same type of feature. Features in the contextual set
can be described in many ways (e.g., sometimes as a point that describes roughly
where the feature is located and some other times as a polygon describing its exact
location and area). Depending on the spatial relation specified in the definition of the
indicator, it will be necessary or desirable to reduce all features to the same represen-
tation type.

The challenges presented above are relevant in all scenarios where the contextual set con-
tains noisy data. When we apply MethOSM to our driving example and to the choice of
OSM as the contextual set for that particular case, we will explicitly recall these challenges
as we find them.

JOSIS, Number 19 (2019), pp. 3–27
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At the end of Step 1 the properties of the contextual set are known and potential chal-
lenges are identified.

Step 2: analysis of the indicator’s natural language definition. In this step, NLDef is
analyzed to determine two elements:

• A query q to produce a raw POI set R. This query q will retrieve only the features in
the contextual set C that are points of interest according to NLDef . The process of
determining q is guided by the analysis performed in Step 1. It takes into account A
andB to bridge any discrepancies and to minimize differences in coverage, specificity,
and richness of annotations from location to location. The resulting raw set R is
not yet ready to use. It possibly includes duplicates that need to be eliminated and
heterogeneous representations that need to be harmonized.

• The scoring function f that will be applied to produce values for the indicator. This
function f spatially relates g to points of interest in P and then uses these relations to
produce a numerical description according to NLDef .

We define three scoring functions and three spatial relations to illustrate this step. This
list is by no means exhaustive and is determined solely by the requirements of the indica-
tors presented in Section 3 where we describe our driving example. Other kinds of indica-
tors will require different scoring functions and spatial relations not listed here. The scoring
functions of our driving example are defined in terms of spatial relations of containment,
distance, and area intersection to compute the indicators by using g and P as input:

• Count nearby. Defined as:

countNearby(g,P, d) =
∣∣ {p | p ∈ P ∧ distance(g, p) ≤ d}

∣∣ (1)

where distance denotes the usual geographical distance and only the POIs p ∈ P,
contained within a circle defined using the distance d from g are selected. The count
is the number of elements of the resulting set.

• Closest distance. Defined as:

closestDistance(g,P) = min
∀p∈P

distance(g, p) (2)

where closestDistance is the minimum distance from g to all the POIs p ∈ P.

• Shared to total ratio. Defined as:

ratioSharedTotal(g,P) =
area(shared(g,P))

area(g)
(3)

where area is defined in the usual way as the extent of a geographical surface. The
shared function is defined as:

shared(g,P) =

n⊔
j=1

g u pj pj ∈ P, n =
∣∣P∣∣ (4)

where u denotes the intersection area and t denotes the area resulting from the union
between geographical surfaces. That is, shared(g,P) is the union of the intersections
found by comparing g to each one of the n elements pj ∈ P.

www.josis.org
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At the end of Step 2 we obtain the raw POI set R and the definition of f , the scoring
function to compute the indicator for g.

Step 3: cleaning of the POI set. In order to apply the scoring function f , we need to
transform the raw POI set R into the clean version P. The analysis done in Step 1 should
be used as guidance to achieve this.

In the case of our driving example, as a result of the analysis of R in light of challenge C,
we identify different cases of duplicate entities in R and the consequent need for dedupli-
cation in order to transform R into the clean version P. We present the two deduplication
strategies applied in our driving example:

• Deduplication by intersection. The elimination is done by detecting intersection
areas between points of interest, preferring the more descriptive version over the less
descriptive one.

dedupByIntersection(R) = {r | r, q ∈ R ∧ r u q = ∅}
∪ {r | r, q ∈ R ∧ r 6= q ∧ r u q 6= ∅ ∧ isPolygon(r)}
∪ {q | r, q ∈ R ∧ r 6= q ∧ r u q 6= ∅ ∧ ¬ isPolygon(r)}

(5)

where ∪ is the set union and isPolygon is true only when the element is a polygon.
In this way, all r ∈ R are selected if there is no intersection. If there is an intersection,
the polygon representation is preferred.

• Deduplication by proximity. The elimination is done by treating points of interest
that are closer than a threshold as being the same entity.

dedupByProximity(R, d) = {r | r, q ∈ R ∧ distance(r, q) > d}
∪ {r | r, q ∈ R ∧ r 6= q ∧ distance(r, q) ≤ d ∧ isPolygon(r)}
∪ {q | r, q ∈ R ∧ r 6= q ∧ distance(r, q) ≤ d ∧ ¬ isPolygon(r)}

(6)

where d is the threshold distance to consider that there is proximity between two
elements.

In this way, all r ∈ R are selected if there is no proximity with q. If there is proximity,
the polygon representation is preferred.

From D we identify different ways in which points of interest are represented in R.
Next, we assess the impact that these different representations have on the requirements of
the scoring function f . There is a need to homogenize if not all the different representations
can be used as input for f .

We use the dimensionality reduction strategy in our driving example. This strategy is
applicable when the heterogeneity problem can be addressed by substituting complex rep-
resentations for simpler ones. A concrete instance of dimensionality reduction is reduction
by centroid, in which polygons are, as the name implies, substituted by their centroids. If f
does not require areas, it can be applied after assessing the impact that the substitution will
have. This impact will be negligible for features that cover small areas.

JOSIS, Number 19 (2019), pp. 3–27
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In other cases, there are features that simply lack the information necessary to be used
as input. f requires a more complex representation and thus the only possible strategy is
to discard those features.

The implementation of the strategies to tackle challenges C and D was achieved using
PostgreSQL queries with functions provided by the PostGIS extension, although several
current GIS toolkits should be up to the task.

At the end of Step 3 we obtain a clean POI set P that can be used to evaluate f .

Step 4: computation of the indicator. Once the scoring function f and the POI set P are
known, we can compute the value of the indicator for g.

The process can be optimized if we establish a horizon for the contextual set C, centred
on g. This horizon establishes a window for querying C, thus restricting the indicator to
only describing phenomena inside the window defined by the horizon.

The horizon is selected in order to include all relevant features, assuming that there is a
maximum distance beyond which there is no useful information for the computation. We
propose the bounding box approach to define the horizon: the centroid of g is taken and the
box is defined by transposing coordinates by a fixed distance in meters in all four cardinal
points. We selected the bounding box approach due to its lightweight nature, although
other approaches such as defining the horizon as a circumference of a certain radius from
the centroid of g will produce the same results.

At the end of Step 4 we obtain the output o, that is, the value of the indicator for g.

Although we discussed scoring functions in Step 2 and cleaning strategies in Step 3, these
are specific results of the application of the methodology in our driving example and for the
case of OSM. Other datasets will present different situations and require different strategies
that could require dataset-specific domain knowledge on the part of the data scientist. The
goal of the methodology is to ease the task of defining the scoring function and of obtaining
a suitable contextual set by analyzing the problem in the proposed four steps.

5 Exemplifying MethOSM for computing indicators

In Section 4 we presented MethOSM to compute indicators starting from an informal defi-
nition NLDef of the indicator, a geographical feature g on which to compute the indicator
and a contextual set C that describes the surroundings of g. In this section we show how
we apply the methodology to our driving example, in order to compute each one of its
indicators. The geographical feature g is the same in all cases: a polygon representing a
census cell in the city of Turin. In the same way, OSM is the contextual set C shared among
all indicators. We will query OSM to build our POI set P. To this end, we will define
queries using Overpass QL10.

To apply MethOSM, first we describe Step 1 (the analysis of the contextual set) as this
step is shared among all three indicators in our running example. Next, we perform the
steps particular to each indicator in Subsections 5.1, 5.2 and 5.3, respectively.

Step 1: analysis of the contextual set. We analyze the challenges described in Section 4
in light of our driving example:

10http://wiki.openstreetmap.org/wiki/Overpass API/Overpass QL

www.josis.org
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A Discrepancy of taxonomies between the contextual set and the indicator definition.
We find that in some cases there is a direct correspondence to a class of features in
OSM (e.g., bus stops in OSM are represented with the highway=bus_stop key-value
pair). In other cases there can be a partial correspondence which needs a more com-
plex query. To query for railway stations we have to specifically filter out entrances
to the subway network using [railway=station][subway!=yes]. Another example of
partial correspondence occurs in the case of green areas: we have to issue a com-
plex query that retrieves woods, parks, and gardens, represented as ([natural=wood];
[leisure=park]; [leisure=garden]). This analysis is summarized in Table 1.

POI Type OverpassQL Query
Bus stops [highway=bus_stop]
Railway stations [railway=station][subway!=yes]
Green areas ([natural=wood]; [leisure=park]; [leisure=garden])

Table 1: Mapping bus stops, railway stations, and green areas to Overpass QL queries.

B Variations in coverage, specificity, and richness of annotations. In the particular
case of OSM, coverage can vary from city to city depending on region and size: bigger
cities tend to have higher coverage in general while cities in the North of Italy present
higher coverage than cities in the South. When analyzing specificity and richness
for different types of features, we see that annotation provenance plays a decisive
role. Official agencies have varied policies and spend resources differently; Italian
municipal authorities do a good job annotating bus stops while annotation of harbor
facilities is at best spotty.
Volunteer efforts often bridge the gap but they can be less rigorous. We found dif-
ferent approaches for annotating harbors (e.g., more specific harbour=yes versus less
precise name=“Bacino della Stazione Marittima”), often requiring a search for specific
harbor names to get their locations instead of resorting to looking for the more suit-
able key-value combination.
Fortunately, for our driving example, which spans a relatively small area (i.e., the city
of Turin), the quality of annotations for all types of points of interest is sufficiently ad-
equate. In other cases a possible solution would require location-dependent queries.
That is, there would be the need to specify custom queries attached to specific loca-
tions to supersede generic ones.

C Duplicate entities. OSM is kept up-to-date by the combined effort of countless an-
notators. By their very nature, such crowd-sourced efforts are very decentralized and
there is no easy way to avoid errors in the annotation task.
In some cases, the same entity is annotated several times by independent annotators.
Consequently, some processing must be done to discard duplicates. In our driving ex-
ample, some railway stations are mapped more than once, first as an area and again as
a node, without a relation that links them. These cases can be systematically spotted
as the distance between duplicates is zero or near-zero.

D Different representations for the same type of feature. Entities in the contextual
set can be described in many ways. In the case of OSM, the same type of entity
can be described as a point in one case, and as a polygon in another. This poses a
problem if we require that features be of the same dimensionality in order to treat
them uniformly across the entire computation of an indicator.

JOSIS, Number 19 (2019), pp. 3–27
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We deal with this situation when we count nearby bus stops for census cells within
the city of Turin. In OSM, bus stops are often described using single points, although
in some cases annotators have instead provided polygons that map the waiting area
of these bus stops. These differences in dimensionality, when present, need to be
taken into account before applying the spatial relation needed to compute an indica-
tor.
A similar situation occurs also for railway stations and green areas. Some instances
are thoroughly represented as polygons that give information about the area covered
by the feature while other instances only give a general location as a point.

5.1 Number of nearby bus stops indicator

Step 2: analysis of the indicator’s natural language definition. This indicator can be
informally defined as:

NLDef : the number of nearby bus stops to each of the census cells in the city, where
a bus stop is considered to be nearby if the distance between it and the cell is at most 500
meters.

An analysis of NLDef determines the following:

• The raw POI set R is obtained by querying C (i.e., OSM, our contextual set) for bus
stops, according to Table 1:

R = q(C) = overpass(C, “highway = bus_stop”)

where overpass represents the query function in OverpassQL, R is the possibly raw
set of features in the contextual set C that represent bus stops.

• The scoring function f that relates g with the POI set P:

f = countNearby(g,P, 500) (7)

where countNearby is as defined in (1).

Step 3: cleaning of the POI set. In C we determined that R contains duplicate bus stops.
To come up with a sensible cleaning strategy, we identified different cases of duplication:

• The bus stop being represented more than once with increasing degrees of complexity
(i.e., as a point representing the general location of the bus stop, and as a polygon
describing the exact waiting area for passengers);

• The feature being accidentally represented more than once due to contributor errors.

In the first case, the issue can be solved by applying dedupByIntersection as defined in
(5), discarding all points inside polygons:

R′ = dedupByIntersection(R)

where R′ is the set resulting from the application of the strategy.

www.josis.org
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For the second case, dedupByProximity as defined in (6) will be enough to discard un-
wanted repetitions:

R′′ = dedupByProximity(R′, 3)

where 3 meters is the threshold distance we selected to assume that two features are the
same and R′′ is the set resulting from the application of the strategy.

From D we know that our set of bus stops R′′ contains heterogeneous representations.
Given the fact that the bus stops represented as polygons span a reduced area, we can
substitute these polygons by their centroids with a negligible impact on accuracy:

P = reduceByCentroid(R′′)

where P is the clean, homogeneous set of points representing bus stops.

Step 4: computation of the indicator. Once P is determined, we are ready to find the
output o for g by applying f as defined in (7):

o = countNearby(g,P, 500)

Figure 3 shows a choropleth map of Turin census cells using the indicator as the colour-
ing variable.

© OpenStreetMap contributors (http://www.openstreetmap.org/copyright) © Carto (https://carto.com/attributions)

Figure 3: Census cells by number of nearby (d ≤ 500m) bus stops. Features representing
bus stops are overlaid to provide reference.

5.2 Distance to the closest railway station indicator

Step 2: analysis of the indicator’s natural language definition. This indicator can be
informally defined as:

NLDef : the distance from the centroid of each census cell in the city to the closest
railway station, where the distance is measured in meters.

An analysis of NLDef determines the following:

JOSIS, Number 19 (2019), pp. 3–27
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• The raw POI set R is obtained by querying C for railway stations, according to
Table 1:

R = q(C) = overpass(C, “[railway = station][subway! = yes]”)

where R is the possibly raw set of features in the contextual set C that represent
railway stations.

• The scoring function f that relates g with the POI set P:

f = closestDistance(g,P) (8)

where closestDistance is as defined in (2).

Step 3: cleaning of the POI set. In C we determined that R contains more than one rep-
resentation referring to the same railway station.

Unlike the case in Section 5.1, the impact of duplicates is negligible for finding the dis-
tance to the closest railway station in the city of Turin. This is due to (8) selecting the closest
distance regardless of the number of times the same feature is represented.

From D we know that our set R of railway stations contains heterogeneous representa-
tions. After inspection, we determined that the centroids of railway stations are closer to
where railway users need to reach to use the railway service than points in the perimeter of
polygon representations. Through homogenization, we obtain more useful representations
of each railway station:

P = reduceByCentroid(R)

where P is the clean set of points representing railway stations and reduceByCentroid is a
function that finds the geometric centroid for each element in R to build P.

Step 4: computation of the indicator. Once P is determined, we are ready to find the
output o for g by applying f as defined in (8):

o = closestDistance(g,P)

Figure 4 shows a choropleth map of Turin census cells using the indicator as the colour-
ing variable.

5.3 Green area coverage indicator

Step 2: analysis of the indicator’s natural language definition. This indicator can be
informally defined as:

NLDef : the ratio of green area (parks, woods, gardens) to total census cell area.

An analysis of NLDef determines the following:

• The raw POI set R is obtained by querying C for features that represent parks,
woods and gardens. According to Table 1:

R = q(C) = overpass(C, “([natural = wood]; [leisure = park]; [leisure = garden])”)

www.josis.org
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© OpenStreetMap contributors (http://www.openstreetmap.org/copyright) © Carto (https://carto.com/attributions)

Figure 4: Census cells by distance to the closest railway station. Railway station features
are overlaid to provide reference.

where R is the possibly raw set of features in the contextual set C that represent green
areas.

• The scoring function f that relates g with the POI set P:

f = ratioSharedTotal(g,P) (9)

where ratioSharedTotal is as defined in (3).

Step 3: cleaning of the POI set. In C we determined that R contains more than one rep-
resentation referring to the same green area. Two cases were found:

• parks represented both as a polygon and as a point and
• parks annotated twice or more as polygons.

The first case is handled taking into account our analysis in D; we cannot work with point
representations to compute the green area coverage. We need to discard point representa-
tions:

R′ = discardPoints(R)

where R′ is a set that contains only polygons.
The second case will be handled in the Step 4, since ratioSharedTotal makes use of

shared , as seen in (3). Note that shared uses t, seen in (4), to compute the union between all
green area polygons. This has a convenient side-effect: repeated green areas that overlap
are taken into account just once. Consequently, R′ is ready to be used as input for the
scoring function:

P = R′

Step 4: computation of the indicator. Once P is determined, we are ready to find the
output o for g by applying f as defined in (9):

o = rationSharedTotal(g,P)

JOSIS, Number 19 (2019), pp. 3–27
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Figure 5 shows a choropleth map of Turin census cells using the indicator as the colouring
variable.

© OpenStreetMap contributors (http://www.openstreetmap.org/copyright) © Carto (https://carto.com/attributions)

Figure 5: Census cells by ratio green area to total cell area. Green area polygons are overlaid
to provide reference.

6 Discussions and validation of MethOSM for computing a
complex indicator

In order to validate the proposed methodology in a larger setting, we used it for computing
a complex indicator. The complex indicator describes a socio-economic phenomena—that
of understanding how the value of real estate properties changes over time.

The indicators introduced in the previous sections were used to build the complex indi-
cator used in an Automated Valuation Model (AVM) that estimates the value of real estate
properties. In a nutshell, zones with higher scores for mass transportation and greater
green area coverage presume to contain more valuable properties. This composite indi-
cator was developed for Cerved, a credit scoring company in Italy11, as part of Cerved’s
Cadastral Report Service (CCRS)12 aiming to objectively estimate the value of real estate
properties in Italy by using different types of datasets (open data / OSM, proprietary data,
and third-party data). Valuation of real estate properties is a challenging task and requires
accumulation and processing of different types of information about properties, including
contextual information about their locations, such as economic and social trends, environ-
mental conditions, proximity to the historical center, and concentration of managers’ and
shareholders’ households [34], to name a few. This task is typically performed by expert
evaluators who visually inspect the property. As such it is a long, expensive, and error-
prone process which is mostly qualitative and based on implicit knowledge.

The objective of CCRS was to automate this task by building an AVM integrating com-
posite indicators that could estimate values for real estate properties. Moreover, it was
crucial for the service to be able to compute the indicator for the entire Italian territory.

11https://www.cerved.com
12More details about the CCRS business case can be found at https://blog.prodatamarket.eu/2015/06/

cerved-in-the-prodatamarket-project.

www.josis.org
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OSM was chosen as a source of contextual territorial information. Starting from the exact
location of a property, the property is mapped to the corresponding census cell and the
related territorial scores. For each census cell, different indicators were computed based on
the different sources available, in a hierarchical manner, following the MethOSM method-
ology, to arrive to an integrated final score used by the estimation algorithm (i.e., the real
estate integrated score). These indicators computed per census cell were:

• Social discomfort index (IDS): based on social and demographic variables from the IS-
TAT national census of 2011.

• Real estate discomfort index (IDE): based on the state of conservation of properties from
the ISTAT national census of 2011.

• Social demographic score: based on IDS and IDE.
• Manager and Shareholder Concentration (MSHC) score: based on Cerved official and

proprietary data about the presence of managers and shareholders in the area.
• People score: based on the integration of MSHC and the Social demographic score.
• Heavy Industrial Concentration (HIC) score: based on Cerved official and proprietary

data about the concentration of industries in certain NACE13 categories.
• Territory score: based on HIC and other variables about territorial features. Among

these territorial features, the following OSM-derived indicators were used: number
of nearby bus stops, distance to the nearest railway station, green area coverage, to-
tal length of pedestrian paths in the vicinity, number of sites of historical relevance,
number of nearby hotels and hotel-related features, ratio of land for industrial use to
total cell area, and distance to the nearest coast (where applicable).

• Real estate integrated score: based on the integration of the People and Territory scores.

For the Territory score, in addition to the three indicators computed in Section 5,
MethOSM was used to guide the analysis for the five other indicators mentioned above.
In the following list we discuss some of the peculiarities of the application of MethOSM,
compared to the indicators discussed in Section 5:

• Total length of pedestrian paths in the vicinity. After a preliminary analysis, it was
determined that the best alignment with the intended definition of pedestrian path
was produced by the query that retrieved features tagged with at least one of high-
way=pedestrian, highway=footway, highway=cicleway and highway=steps. To clean the
raw POI set R, we eliminated all features that were single points or polygons, leav-
ing only lines. The scoring function selected all paths within a radius of 1000 meters
from the centroid of the census cell.

• Number of sites of historical relevance. After a preliminary analysis, it was de-
termined that the relevant tags were tourism=museum, historic=ruins, historic=yes, his-
toric=castle and historic=building. The annotation on the area representation was pre-
ferred for overlapping annotations. The reasoning for the scoring function was simi-
lar to the case described in Section 5.1 for “number of nearby stops.”

• Number of nearby hotels and hotel-related features. In this case, we de-
termined that the relevant OSM tags were tourism=hotel, tourism=hostel and
tourism=guest_house. The deduplication strategy chosen was the same as in the previ-
ous case.

13EC NACE: http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:
Statistical classification of economic activities in the European Community (NACE)
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• Ratio of land for industrial use to total cell area. Here the OSM taxonomy is well
aligned with the intended meaning of industrial land use. Polygon representations
tagged with landuse=industrial were retrieved and used in a scoring function similar
to the case described in Section 5.3 for “green area coverage.”

• Distance to the nearest coast. In this case there is a good alignment between the
OSM natural=coastline and the concept of coast required by the indicator. The POI
set obtained by issuing the query contained only open paths that represented lines.
Consequently, no further transformations were required. The scoring function was
analogous to the case described in Section 5.2 for “distance to the closest railway
station.”

MethOSM was successfully employed to compute the OSM-derived indicators for the
whole of Italy: more than 400,000 census cells in 7,978 municipalities and 20 regions, in-
cluding rural areas, villages, towns, and cities in the following configurations: coastal,
inland, and mountain. The reason for computing the OSM-derived indicators in differ-
ent configurations and weighting them differently in the final composite indicator was to
take into account variations in availability and quality of the data in various areas. In or-
der to measure the quality of the resulting indicator, one has to compare it to a “golden
standard.” In our case of the indicator estimating the value of real estate properties the
only way to check how good it is was to compare it to a corresponding indicator calcu-
lated based on historical data on real estate transactions (data available from the Italian
government, though not open data), i.e., the “golden standard.” The computed indicator
closely followed the “golden standard,” meaning that the employed data and method were
sound for this particular problem. This required the computation of the OSM-derived in-
dicators in different configurations as mentioned above, and adjusting their weights in the
final composite indicator till a close enough match to the “golden standard” was obtained.
MethOSM played a key role in guiding the process for harmonizing the complex process
of dealing with OSM data for computing the various indicators, making the overall task
of computing OSM-derived indicators efficient and effective. Indicators from this business
case were made available as Linked Data in [40] through the DataGraft platform14 [36, 37].

The applicability of this complex indicator to another country depends on several fac-
tors. First, for computing the scores that use proprietary data (e.g., data about presence
of managers and shareholders in a given area), similar data would need to be obtained
for that country. Typically this is commercial data and not open. Further, the structure of
this proprietary data would need to be similar to the one used for computing the indicator
for Italy, likely requiring some transformations. Second, for the OSM-derived indicators
several aspects would need to be take into consideration. For example, cultural differences
may result in concepts such as nearby being defined differently. Additionally, the alignment
work for OSM to match the intended meaning contained in the natural language definition
of the indicator may produce different results depending on the annotation methodologies
used from location to location. Consequently, also the deduplication strategies may need
adjustments to reflect this fact.

14https://datagraft.io
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7 Conclusions and outlook

With the availability of increasing volumes of data, new opportunities are opened for the
development of various composite indicators to define and analyze complex social, eco-
nomic, political, or environmental phenomena. The emergence of open data is especially
relevant as it has enabled individuals and businesses the access to affordable data on top
of which interesting indicators can be computed. An example of such an open dataset is
OSM which has been used as a baseline dataset for computing indicators, for example,
in areas where official data did not exist, or simply because OSM data is freely available
and can be easily accessed. Previous work on computing indicators derived from OSM
has shown a number of challenges in extracting and using data for computing indicators,
with ad-hoc, often overlapping solutions being developed to address the challenges. In
this context, this paper proposed (and formalized) MethOSM—a systematic methodology
for computing indicators derived from OSM data, with the aim of supporting individuals
with a clear set of steps and help them identify a set of issues that need to be addressed for
an effective and efficient computation. To that end, we exemplified the successful use of the
proposed methodology on a number of indicators that use OSM as the contextual source,
and validated the methodology for computing a complex indicator in a real business case
for estimating the value of real estate properties using OSM data.

We consider the methodology proposed in this paper generic in the sense that it can be
used with other contextual datasets. To this end, we plan to investigate the use of MethOSM
with contextual datasets other than OSM such as the Italian Car Fleet Database15 to describe
fleet configurations by municipality and region and the Atoka Company Database16 to
model phenomena related to economic activity throughout Italy. The study of these contex-
tual datasets will add to the list of challenges introduced in Step 1 in the current version of
MethOSM. With a more exhaustive list, it should be possible to introduce a more systematic
approach to the analysis of the contextual dataset. The study of other well-known reference
datasets should result in the identification of a set of cleaning and deduplication strategies
and a description of the conditions in which each strategy can be applied. Additionally,
an analysis of the different representations and spatial units in use could result in exten-
sions to MethOSM that deal with these differences in an automatic or semi-automatic way.
Moreover, the application of MethOSM to compute new types of indicators will most likely
add to the scoring function types now present in Step 2. The next iteration of MethOSM
will introduce feature selectors and feature evaluators to further describe the process of trans-
forming natural language definitions into scoring functions. Future work can include the
use of OSM to compute indicators based on more complex distance algorithms such as
walking distance, driving distance, and commuting distance. Comparison of MethOSM re-
sults against a dataset of commuting times in metropolitan areas could open an interesting
avenue for performance evaluation. Another avenue for potential future work could be
related to biases (e.g., socio-political) introduced in OSM data during its production and
how such biases could be taken into account in MethOSM. On one hand, we foresee cer-
tain improvements of the data extraction procedures. As demonstrated in [20] positional
accuracy of OSM data increases with the amount of contributors who worked on a given
spatial unit of OSM. It is worth exploring whether this and possibly other intrinsic data
properties could be used to improve data extraction and data cleansing procedures of our

15https://www.dati.gov.it/dataset/parco-circolante-dei-veicoli
16https://atoka.io
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methodology. On the other hand, fundamental studies on the imprint of social inequali-
ties and digital divide on VGI question consistency and utility of VGI as a category [8, 9].
It is important to incorporate data about demographics of the OSM contributors into our
extraction procedures, so that the users of the methodology can decide whether and how
to utilize such data.
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