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Abstract: This paper discusses the challenges of using big Earth observation data for land
classification. The approach taken is to consider pure data-driven methods to be insufficient
to represent continuous change. I argue for sound theories when working with big data.
After revising existing classification schemes such as FAO’s Land Cover Classification
System (LCCS), I conclude that LCCS and similar proposals cannot capture the complexity
of landscape dynamics. I then investigate concepts that are being used for analyzing satellite
image time series; I show these concepts to be instances of events. Therefore, for continuous
monitoring of land change, event recognition needs to replace object identification as the
prevailing paradigm. The paper concludes by showing how event semantics can improve
data-driven methods to fulfil the potential of big data.
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1 Introduction

Satellite images are the most comprehensive source of data about our environment; they
provide essential information on global challenges. Images provide information for mea-
suring deforestation, crop production, food security, urban footprints, water scarcity, land
degradation, among other uses. In recent years, space agencies have adopted open distri-
bution policies. Petabytes of Earth observation data are now available. Experts now have
access to repeated acquisitions over the same areas; the resulting time series improve our
understanding of ecological patterns and processes [36]. Instead of selecting individual
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images from specific dates and comparing them, researchers can track changes continu-
ously [49]. To handle big data, scientists are developing new algorithms for image time
series (for recent surveys, see [17, 51, 52]). These methods are data-driven and theory-limited.
However, numbers do not speak for themselves [5]. Data-driven approaches without solid
theories can lead to results which will not increase our knowledge [26].

What could be the effect of data-rich research in Geography and GIScience? Miller and
Goodchild [33] state: “data-driven research should support, not replace, decision making
by intelligent and skeptical humans.” Kwan [28] recommends a critical evaluation of big
data algorithms. Li et al. [29] call for fresh approaches to obtain “causal and explanatory
relationships from big spatial data.” In their view, theory-free or theory-poor models are not
sufficient for conceptual advances in our knowledge of geographical reality. We need sound
theories to deal with big data without drowning in it.

Consider how experts use Earth observation data. Their input are images with resolution
ranging from 5 to 500 meters, produced by satellites such as Landsat, Sentinels-1/2/3,
and CBERS-4. To extract information, experts use methods that assign a label to each
pixel (e.g., ‘grasslands’). Labels can represent either land cover or land use. Land cover is the
observed biophysical cover of the Earth’s surface; land use concepts describe socio-economic
activities [8]. Thus, ‘forest’ is a type of land cover, while ‘corn plantation’ is a kind of land
use. To support land classification, scientists have proposed ontologies and descriptive
schemes [20]. We might thus ask: Are the current classification systems suitable to represent
land change when working with big data? If not, which concepts are needed and how should they be
applied?

In what follows, I present the prevailing consensus on classification systems: FAO’s Land
Cover Classification System (LCCS) [21]. I argue that LCCS does not meet the challenges
posed by big data. To support these views, I consider concepts used on image time series
analysis; I show these concepts are related to event recognition and are not representable in
LCCS. To improve the theory behind big data, I introduce elements of an event-centered
ontology for land classification.

2 Classification systems for Earth observation data: current
status

The act of classification raises philosophical questions dating as far back as Aristotle. We
use an a priori conception of reality to classify the world; what we observe has to fit our
categories. Words in our language describe elements of the external reality. However,
geographical terms such as ‘mountain’ and ‘river’ are imprecise and context-dependent [31,
45, 46]. These ambiguities have motivated research on geospatial ontologies and semantics
[13, 27, 44]. In the early 2000s, there was much optimism about the impact of unified
ontologies on modeling and interoperability of geographical information. However, building
such complete ontologies is hard. Janowicz et al. [22] recognize that “geographical concepts
are situated and context-dependent, can be described from different, equally valid, points of
view, and ontological commitments are arbitrary to a large extent.” Work on classification
systems has shifted. Rather than using a single ontology, the current consensus argues for
domain ontologies based on a common foundational ontology. These domain ontologies
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are means of making concepts of specific disciplines explicit and better communicating
them [6, 43].

The semantics of Earth observation data are constrained by classification systems. Ex-
perts agree on what are the possible descriptions of the objects in the image (e.g., ‘forest’,
‘river’, ‘pasture’). Each pixel of the image is then labeled using visual or automated interpre-
tation. As an example, for countries reporting greenhouse gas inventories, the International
Panel of Climate Change (IPCC) restricts the top-level land classes to ‘forest’, ‘cropland’,
‘grassland’, ‘wetlands’, ‘settlements’, and ‘others’. This approach is too simplistic. Sasaki
and Putz [41] criticize the IPCC base classes for inducing wrong assessments for ecological
and biodiversity conservation. The IPCC classes are an example where pre-conceived rules
collide with the diversity of the world’s ecosystems.

Since land classification provides essential information about our environment, many
GIScience researchers have addressed the subject of land use and land cover semantics [2,3,9].
They investigated consistency of classification systems [23], semantic similarity between
terms used by different systems [12], and disagreements between results [14]. The current
consensus favors ontologies aiming at unambiguous definitions of land cover classes, such
as the FAO Land Cover Classification System (LCCS) [21]. For this reason, it is important to
discuss whether LCCS works well with big EO data.

FAO has developed the Land Cover Classification System (LCCS) “to provide a consistent
framework for the classification and mapping of land cover” [11]. LCCS is a hierarchical
system. In what follows, we discuss LCCS 2.0, which is the version most LCCS-based
classifications use. At its highest level, LCCS 2.0 has eight major land cover types:

1. Cultivated and managed terrestrial areas.
2. Natural and semi-natural terrestrial vegetation.
3. Cultivated aquatic or regularly flooded areas.
4. Natural and semi-natural aquatic or regularly flooded vegetation.
5. Artificial surfaces and associated areas.
6. Bare areas.
7. Artificial water bodies, snow, and ice.
8. Natural water bodies, snow, and ice.

The division on eight classes considers three criteria: presence of vegetation, edaphic
conditions, and artificiality of cover [11]. Specialization of top-level LCCS classes uses
properties such as life form, tree height, and vegetation density, setting pre-defined limits
(e.g., “tree height > 10 meters”). These subdivisions are ad hoc and application-dependent,
leading to a combinational explosion with dozens or even hundreds of subclasses [21]. Such
high expressive power can lead to incompatible LCCS-based class hierarchies [23].

LCCS is a landmark initiative; it provides a basis for a common understanding of land
cover concepts. Many global and regional land mapping products use LCCS, including
GLOBCOVER [4] and ESA CCI Land Cover [30]. However, LCCS makes assumptions which
limit its use with big data:

1. LCCS describes land properties based only on land cover types, disregarding land use.
For example, LCCS does not distinguish ‘pasture’ from ‘natural grasslands’; it labels
both as herbaceous land cover types.
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2. The LCCS hierarchy uses hard boundaries between its subclasses. At each level of
the hierarchy, properties of subclasses use fixed values (e.g., “sparse forests have
between 10% and 30% of trees”). Real-world class boundaries do not fit into such strict
definitions. When doing data analysis with machine learning, boundaries between
classes are data-dependent and cannot be set a priori [19].

3. Classification in LCCS has no temporal reference. LCCS assumes that subtype proper-
ties (e.g., percent of tree cover) are detectable at the moment of classification. These
properties do not refer to past or future values. Land use and land cover types whose
values require time references (e.g., “forest land cleared in the last decade”) are not
representable in LCCS.

For example, the UNFCCC Reduction of Emissions by Deforestation and Degradation
initiative (REDD+) requires representing and measuring forest dynamics [10]. Static and
rigid definitions of ‘forest’ used by LCCS cannot represent concepts such as ‘forest degrada-
tion’ [40]. Forest degradation happens when a natural forest loses part of its biodiversity
and its tree cover. It is not a stable state but an intermediary situation that can lead to
different medium-term outcomes. One can restore a degraded forest; degradation may
continue and lead to complete loss of forest cover. Whatever the case, LCCS lacks explicit
temporal information to capture forest degradation and thus support initiatives such as
REDD+. Therefore, LCCS is thus not fit for many critical applications of EO data.

3 Elements of an ontology of land use change

3.1 Overview

To represent change in geographical space, GIScience authors distinguish between continu-
ants and occurrents [15, 16, 18, 50]. Continuants refer to entities that “endure through time
even while undergoing different sorts of changes” [18]. The Amazon Forest and the city
of Brasilia are continuants. Occurrents happen in a well-defined period and may have
different stages during this time. Cutting down a forest area, cultivating a crop in a season,
and building a road are occurrents. Objects are associated to continuants and events to
occurrents. Philosophers have debated whether these two kinds of entities can be reduced
to a single ontology or whether they are different perspectives of the same reality [42]. I
follow Grenon and Smith [18] who distinguish two top-level ontologies: one for continuants
and another for occurrents.

Atemporal classification systems such as LCCS refer only to properties of continuants.
One can state facts such as “this area has 30% forest cover” using LCCS, but cannot assert
that “this area lost 70% of its forest in the last two years.” To convey change, classification
systems for big data need to include occurrents. In what follows, I discuss concepts used in
the analysis of satellite image time series. These time series are extracted from organized
collections of Earth observation data covering a geographical area in regular temporal
intervals. These concepts include ‘land-use change trajectory’, ‘trend’, ‘break’, ‘disturbance’,
and ‘degradation’; they refer to occurrents and should be part of classification systems used
in big EO data analysis.
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A caveat is in order. Philosophy of Language works such as Vendler [47] and Mourelatos
[34] associate events to verbs (e.g., ‘run’, ‘walk’, ‘swim’). When dealing with land change
analysis, we use nouns (e.g., ‘trend’, ’break’). These nouns describe how properties measured
in images change; as such, they represent occurrences. Although the proposed terms
combine events with their measured properties, this is not a problem since the context is
clear.

3.2 Land-use change trajectories

Figure 1: Evolution of vegetation index in three locations in an agricultural region in Brazil,
measured by MODIS sensor every 16 days from 2000 to 2017 (source: courtesy of Rolf
Simões).

As a foundational concept, I propose ‘land-use change trajectory’ or ‘trajectory’ for short.
A trajectory is a time series l = {(v1, t1), . . . , (vn, tn)}, vi ∈ V, ti ∈ T . Each value vi from a
domain V is associated to an interval ti from a set T . Trajectories can be generic measures
(“this dataset captures changes in one area from 2000 to 2020”) or denote specific cases (“this
dataset corresponds to an undisturbed forest from 2000 to 2010”).

Consider Figure 1, which shows three locations in Brazil. On the left, a high-resolution
image shows a snapshot of the area. The graphics show the NDVI vegetation index, mea-
sured by the MODIS sensor every 16 days from 2000 to 2017. Spikes in the graphs are noise
from clouds and can be ignored in the discussion. In the top graph, the vegetation index has
a quasi-periodic variation, consistent with measures of agricultural areas. The middle graph
shows a quasi-constant signal typical of a forest area. The bottom graphic reveals a more
complex pattern. From 2000 to 2002, the signal is compatible with a forest. The vegetation
index decreases from 2003 to 2005, indicating a deforestation event. From 2007 to 2010,
the signal shows a small annual variation, which suggests the area was used as pasture
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for cattle raising. From 2011 to 2017, the index becomes similar to the top graph, which
shows conversion to agriculture. In all cases, one can speak of land-use change trajectories
measured by the sequence of satellite images.

3.3 Patterns

It is useful to identify ‘patterns’, defined as trajectories lp representing a known event.
Patterns lp are estimated from the data using statistical approximations [32], curve fitting [24]
or other adjustment methods [51]. Phenological models are important subclasses of patterns;
they are useful for agricultural monitoring since they capture the onset, growth, maximum,
and senescence of croplands [51]. For event recognition, researchers combine patterns with
matching functions. Given a pattern lp and a trajectory l, a matching function fm(lp, l)

measures how much l is similar to lp. The most common matching functions are distance
metrics D(lp, l) such as Euclidean distance and dynamic time warping [32, 38]. Pattern
matching is the basis for many techniques for change detection using satellite images [52].

Chazdon et al. [7] use patterns to address the question: when is a forest a forest? The
authors argue that current forest definitions used by institutions such as FAO and UNFCCC
are incomplete. They state, “To assess and monitor forest and reforests properly requires
viewing them as dynamic systems.” The authors propose forest definitions based on
patterns, as Figure 2 shows. Different situations can occur, depending on how the structural
complexity of forests varies in time. Trajectory (2) in Figure 2 shows a complete loss of
complexity, resulting in deforestation; trajectory (3) shows a case of forest degradation
followed by a recovery. Other trajectories include the case of successful regeneration (case 4)
and regeneration interrupted by a deforestation event (case 5). In all cases, the trajectories
describe events. Therefore, understanding forest evolution requires event recognition.

Chazdon el at. [7] point out that all trajectories shown in Figure 2 are compatible with
FAO’s definition of forest: “Land with tree crown cover of more than 10% and area of more
than 0.5 ha. The trees should be able to reach a minimum height of 5 m at maturity in
situ. Also includes areas normally forming part of the forest area which are temporarily
unstocked as a result of human intervention or natural causes but which are expected to
revert to forest.” The FAO forest definition is an awkward attempt to take forest dynamics
into account, resulting in confusion and leading to subjective interpretations. To support
critical applications such as REDD+, FAO needs to update its definitions of ‘forest’ to include
the temporal element.

3.4 Labeled trajectories

A labeled pattern is a trajectory l = {(v1, t1), ..., (vn, tn)} to which we attach a description.
The most common label is a class name such as ‘forest’ or ‘grassland’. Consider a trajectory
described as “variation of vegetation index in location (-57.32, -11.56) from 2000 to 2010.”
By assigning a class label to the trajectory, we provide additional information about it. For
example, if we find the area has been a forest area (see Figure 1) during this period, the
trajectory’s description becomes “location (-57.32, -11.56) was a forest from 2000 to 2010.”

As described in the previous section, patterns are useful for event recognition and thus
suited for labeling trajectories. An alternative technique is machine learning, done in four
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Figure 2: Forest trajectories in terms of their structural complexity over time (source: Chaz-
don et al. [7]).

phases: (a) define the classification scheme, (b) select the time interval, (c) train the model,
(d) classify the data. Users first define a set of classes C = {c1, . . . , cn}. Then they choose a
temporal interval for classification of time series (e.g., one year). The training data are sets
of trajectories T = {L1, . . . , Ln}; each trajectory fits into the chosen time interval and has a
unique label. The result of the training is a function f : L→ C, which assigns a class c to
each trajectory l. Given the right conditions, machine learning produces good results for
event recognition [1, 37, 39].

Machine learning has limitations for event recognition. The machine learning function
f : L→ C assigns a unique class label c to a trajectory l. This function only works for event
recognition if each trajectory is homogeneous inside the chosen time interval. Consider the
situation of the time series in the lower part of Figure 1. There is a transitional period from
2004 to 2006 when the forest was being removed and replaced by pasture. If training data
does not include this transition, classification by machine learning will not recognize this
event. Since most machine learning algorithms use fixed time intervals and hard boundary
classes, they have limited explanatory power when dealing with transitional periods.

3.5 Trends and breaks

Additional concepts for occurrents in time series of EO data include ‘trends’ and ‘breaks’. A
trend refers to long-term, average tendency of signals associated to an area on the ground
[25]. In most cases, trends are estimated using linear regressions [25, 48]. Given a trajectory
l = {(v1, t1), ..., (vn, tn)}, a trend is a linear approximation lv = α + β ∗ ti, ti ∈ {t1, . . . , tn}.
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Trend analysis methods identify homogeneous subsets of a time series, supporting event
recognition.

A break signals abrupt changes in the time series and signals that a significant disturbance
happened [48]. The OECD Glossary of Statistical Terms [35], states: “breaks in statistical
time series occur when there is a change in the standards for defining and observing a
variable over time.” Thus, breaks are instantaneous events associated to a discontinuity.
Given a trajectory l = {(v1, t1), ..., (vn, tn)}, a break corresponds to an event b associated
to a value and a time (vb, tb) that splits this trajectory in three parts: l = {lp1, b, lp2}where
lp1 and lp1 are instances of two patterns, one occurring before and other after the break.
Break detection is useful for event recognition; a break is a temporal boundary between two
trajectories. Figure 3 shows an example of a break detection algorithm BFAST [48] applied
to a MODIS time series of one pixel in a pine plantation. The granularity of the MODIS time
series is 16 days. BFAST detects various breaks in the time series, associated to harvesting
actions.

Figure 3: Detected changes in the trend component (red) of 16-day NDVI time series
(black) extracted from a single MODIS pixel within a pine plantation, planted in 2001 (top),
harvested in 2004 (middle), and with tree mortality occurring in 2007 (bottom) (source:
Verbesselt et al. [48]).

3.6 A hierarchy of events for land classification

In the previous sections, I examined concepts used for representing information about
occurrents in satellite image time series. These concepts make up a hierarchy of types (see
Figure 4). Taking land-use change trajectory as the top concept, I propose ‘patterns‘ and
‘labeled trajectories’ as subtypes of trajectories. Breaks are different kinds of events. While
trajectories span an interval, breaks are instantaneous considering the temporal granularity
used in time series. More complex concepts such as ‘forest degradation’ and ‘deforestation’
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are subtypes of ’labeled trajectories’ which can be identified by pattern matching or by
classification. For example, consider trajectory (3) in Figure 2, which Chazdon et al. [7]
use as an example of forest disturbance. A pattern-matching algorithm would compare
different time series with a pattern of forest disturbance. The alternative is to use machine
learning with good training data. If the data has spatial and temporal resolution to capture
the trajectories, both approaches are adequate for event recognition. Experts can extend the
hierarchy further by identifying additional types of events.

Figure 4: Proposed hierarchy of concepts related to event recognition in satellite image time
series (source: author).

4 Conclusion: event recognition as a basis for big Earth ob-
servation data analysis

In this paper, I discuss the challenge of supporting big data analysis with sound theory. I
argue that time series analysis, including pattern matching, trend analysis, break detection,
and time series classification, are subtypes of event recognition. When doing continuous
monitoring of land change, it is not advisable to use LCCS and similar approaches. Instead
of identifying classes such as ‘forest’ or ‘grasslands’, data analysis methods need to recognize
events such as “this area was a forest from 2000 to 2010, then it was deforested in 2011,
and turned into grasslands from 2011 to 2020.” When doing continuous monitoring, event
recognition replaces object identification as the purpose of land classification.

The emphasis on event recognition has significant consequences for the design of al-
gorithms and classification systems for big data. In particular, machine learning is not a
panacea. Continuous monitoring of land dynamics using remote sensing data differs from
applications such as spam filters, automatic translation, and object detection. Land systems
do not change overnight. There is a period of transition for land cover conversion. Depletion
of natural resources such as forests and wetlands can take place over months or even years.
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Monitoring subtle land transitions is crucial for protecting our environment. Thus, machine
learning methods need to be adapted to work with satellite image time series.

Most algorithms for big EO data analysis use techniques that have proven useful in
other problems. However, monitoring natural resources is more complex than detecting
spam emails or playing chess. While machine learning and pattern analysis are useful, there
is still much to be done to build sound theories for dealing with big EO data. Long-term
progress will depend on a new generation of methods that combine machine learning with
functional ecosystem models. A better theoretical basis is essential for algorithms that extract
information from petabytes of free EO data. This new generation of combined methods will
allow a better understanding of the processes that drive landscape dynamics.
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