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Abstract: There are many reasons why geospatial data are not geography, but merely rep-
resentations of it. Thus geospatial data will always leave their user uncertain about the
true nature of the world. Over the past three decades uncertainty has become the focus of
significant research in GIScience. This paper reviews the reasons for uncertainty, its vari-
ous dimensions from measurement to modeling, visualization, and propagation. The later
sections of the paper explore the implications of current trends, specifically data science,
new data sources, and replicability, and the new questions these are posing for GIScience
research in the coming years.
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1 Introduction

As Alfred Korszybski put it [9], “the map is not the territory,” or in today’s digital era
we might say that geospatial data are not geography, but merely a representation of it
(for a recent, broad review of the significance of this simple comment in science see [13]).
There are many reasons for this. For example, it is impossible to measure location perfectly
without inheriting the errors of the measuring instrument, whether it be yesterday’s sextant
or today’s GPS. Many of the data types on which GIScience relies—including data on land
use, land cover, or soils—are not strictly replicable; if two experts were asked to make the
same soil map independently they would not produce identical results. Geospatial data
are scale-dependent and always subject to a combination of generalization, abstraction, or
simplification. When Roger Tomlinson and IBM designed the original GIS, the Canada
Geographic Information System, in the mid 1960s, they chose to regard the paper maps
being input to the system as the truth [4], and made no allowances for uncertainties. Vector
geospatial data inherit this assumption today, and the accuracy of a vector database is still
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commonly assessed against the paper maps that were its source, rather than against the
reality that they supposedly represent.

Early work on this topic emphasized accuracy [5], that is, the measurement of the dif-
ferences between a representation and the truth, often termed error. This was broadened
to uncertainty, however, when it became clear that many areas of GIScience, such as the
soil maps discussed in the previous paragraph, lack a clearly defined concept of truth. The
study of uncertainty should thus include vagueness, fuzziness, and related concepts. A dis-
tinction should be drawn between accuracy and precision: in this paper the term precision
refers to the level of detail in the reporting of a measurement.

The problem of uncertainty in geospatial data has many dimensions. GIScience has
inherited a set of longstanding practices and traditions in cartography, where much of the
emotional satisfaction of maps may stem from their very lack of uncertainty, and their habit
of presenting a cleaned-up, simplified world that shows every feature in its place. In turn,
users of GIS and geospatial technologies in general are often reluctant to acknowledge
uncertainty, perhaps expecting that results from a machine that operates to a precision of
eight or sixteen decimal digits will be even more accurate than those obtained from analog
maps. We see this every day in apps that report latitude and longitude to far more decimal
places than is achievable even with the best measuring instruments, and pay no attention
to the actual physical dimensions of the feature whose location is being reported.

While many fields of science are able to address uncertainties using simple statistical
models, such as the normal distribution, spatial data present their own complications. To-
bler’s First Law of Geography asserts that “nearby things are more similar than distant
things,” but this same principle also applies to uncertainties. For example, digital elevation
data are commonly subject to errors in the meter range, perhaps as high as ten meters. If
these errors had an independent, distorting effect on every item of data, then the process
of estimating slope by differencing adjacent elevations would be so subject to error as to be
almost useless. But most errors are in reality strongly and positively autocorrelated, allow-
ing estimates of slope to be made with reasonable confidence. The same behavior occurs
for many types of spatial error, and is often expressed in terms of absolute and relative
errors: relative errors over short distances tend to be much less than absolute errors. But
while Tobler’s statement is simple, the methods of dealing with autocorrelated errors are
far from simple (see for example [14]).

These arguments point to the critical need for information about provenance in geospa-
tial data. What measuring instruments were involved, and what were their average mea-
surement errors? Which sources of uncertainty are likely to have become embedded in
a dataset, and what patterns of autocorrelation have they produced? When two datasets
are involved, have they been acquired independently or do they share some aspects of
provenance (were they developed from the same base dataset, for example)? Significant
strides have been made in the development and adoption of standards for geospatial meta-
data [2], but it remains difficult for users to assess whether one or more datasets are fit for
an intended application.

Much research effort has gone into developing methods for visualizing the uncertain-
ties present in geospatial data [11]. It is easy to imagine blurring features, or greying out
uncertain attributes, but it is far more difficult to convey the essential property of posi-
tive spatial autocorrelation. Animation has proven a powerful option here. For example,
Ehlschlager [1] was able to animate the uncertainty in the effects of sea-level rise on Boston
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Harbor by showing a sequence of images, each of which represented a possible topography
subject to known errors and spatial autocorrelations.

Finally, the models that increasingly underlie the development of policy are also subject
to uncertainty of various kinds. There will be uncertainty in the input data, but also in
the model itself in the form of missing variables or uncertain calibrations. Some insights
can be gained by propagating data uncertainties [6] through the model, or evaluating the
sensitivity of results to variation in data inputs. Another strategy is the ensemble approach,
widely adopted in studies of climate change [8], which assumes that the variation in results
across alternative and competing models somehow represents the distribution of result
uncertainties.

In summary, uncertainty in geospatial data is a longstanding and much-researched
problem with several important dimensions. It impacts all aspects of geospatial data and
all applications, from everyday guidance apps to the modeling of global climate change.
But despite several decades of progress, the impact on the broader user community and
on the general public has been disappointing, and the community researching geospatial
uncertainty remains small. There is little support for uncertainty in mainstream geospatial
software products, though there is abundant support in the narrower fields of geostatistics
and spatial statistics. As noted earlier, there may be good reasons for this, in continuing ad-
herence to well-established cartographic practices, and in the complexity of dealing with
spatially autocorrelated uncertainties. The remaining section of the paper looks forward,
suggesting ways in which this situation might be improved in the coming years.

2 New directions and challenges

2.1 Uncertainty in data science

Data science has been growing very rapidly in recent years, with new programs and posi-
tions in universities, and a very strong demand for data scientists in industry. The relation-
ship between GIScience and data science has been explored in numerous papers, and the
phrase “spatial data science” is growing in popularity. The Fourth Paradigm [3,7] argues
for a new kind of science that is data driven, where theory emerges from analysis rather
than driving it, and encourages scientists to “let the data speak for themselves.” Artificial
intelligence and deep learning are being promoted as ways of searching for patterns in
data, and thus for making effective predictions.

Two major issues emerge from this argument for the GIScientist. First, we know that
not all patterns are equally likely, and that the established principles of GIScience—spatial
dependence, spatial heterogeneity, spatial resolution—limit what can be found in practice
on the Earth’s surface. What role should these principles play in the search for patterns?
Take data on spatial interaction for example. Rather than using the standard spatial inter-
action model, one might generate a multitude of algebraic forms and test data against all
of them, looking perhaps for the one that fits the data best. But many of these forms could
be excluded a priori because of the required scaling behavior of spatial interaction models.

Uncertainty presents the second issue. How can scientific knowledge emerge in a field
such as GlIScience where all data are uncertain? How can techniques of artificial intelli-
gence deal with the peculiar properties of spatial uncertainty? Should analysis begin with
a collection of alternative data sets, each of which represents a possible true state of geo-
graphic reality that is consistent with the known uncertainties? Then how can the patterns
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that emerge from each realization be compared and synthesized? And more broadly, what
kinds of new geographic knowledge might emerge from the use of machine learning on
geospatial data with explicit uncertainty?

2.2 New data sources

The old world of carefully documented, rigorously acquired data, exemplified by the cen-
sus and by the work of national mapping agencies, is rapidly giving way to the world of
Big Data, with its massive volumes and endless variety. Instead of a single source from
which to answer a basic query, such as “what is the elevation of this point?”, we now have
access to digital elevation models from various sources at various resolutions, as well as
digitized map contours and catalogs of spot heights. This leads to a new class of questions:
how to integrate data from various sources, of various provenance and quality, into a single
best estimate, and how to assess that estimate’s uncertainty? Sui [12] argued that synthesis
was becoming as important today as analysis may have been in the past; yet today the
standard toolkit of spatial analysis still offers very few techniques that deal with data of
varying quality. We all know how to estimate a mean and its standard deviation from data
of uniform variance, but what is the best estimate of the mean and its standard deviation
from data of non-uniform variances?

Our new data sources are often of dramatically improved spatial resolution, as for ex-
ample when traditional origin-destination matrices are compared with the results of track-
ing individuals and vehicles. Much of the information being obtained from social media
resolves to the individual. But while we might naively expect a corresponding reduction
in uncertainty, in reality the new types of data introduce new types of uncertainty that are
difficult to model using traditional techniques. For example, can GIScience develop models
of the uncertainties present in the tracks of individuals? What kinds of models might be
used to study uncertainty in the locations obtained from various implementations of GPS,
or to interpolate between observations of the space-time location of an individual driver,
passenger, or walker?

2.3 Replicability

The “replicability crisis” has recently generated very significant interest in science, for ex-
ample in psychology [11]. Kedron et al. [8] have recently provided an extensive perspective
on replicability in geographical analysis, and have made the concept of uncertainty a cen-
tral feature of their discussion. While the paper focuses on geographical analysis, it is clear
that many of the arguments resonate well in GIScience, and that GIScientists would do well
to pay greater attention to replicability in how they design, execute, and report their work.

One of the central principles of GIScience is spatial heterogeneity [10], the observation
that conditions vary across the surface of the Earth and that the results of analysis of one
area do not necessary apply—are not necessarily replicable—in other areas. But if uncer-
tainty is present in the data and therefore in the results of analysis, how much variation
from one area to another is attributable to uncertainty, and how much to spatial hetero-
geneity? What is the role of place-based methods in this context, since they explicitly allow
model parameters to vary from one area to another? Do we need a modified concept of
replicability, call it weak replicability or weak generalizability, to accommodate the essen-
tial nature of research in GIScience?
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3 Concluding remarks

The research of the past three decades has produced a rich body of knowledge regarding
uncertainty in GIScience. But new developments are begging new questions, and it is clear
that the growth of data science, the emergence of new data sources, and new concerns
about replicability are stimulating a continued need for research. The second part of the
paper outlined many of those new questions, and many more undoubtedly will emerge in
the coming years as we continue to question the practices of the past, and to move beyond
their legacy.
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