
JOURNAL OF SPATIAL INFORMATION SCIENCE

Number 20 (2020), pp. 137–165 doi:10.5311/JOSIS.2020.20.554

RESEARCH ARTICLE

An algorithm for the selection of
route dependent orientation

information
Heinrich Löwen and Angela Schwering
Institute for Geoinformatics, University of Münster, Germany

Received: July 15, 2019; returned: October 16, 2019; revised: November 30, 2019; accepted: March 16, 2020.

Abstract: Landmarks are important features of spatial cognition and are naturally included
in human route descriptions. In the past algorithms were developed to select the most
salient landmarks at decision points and automatically incorporate them in route instruc-
tions. Moreover, it was shown that human route descriptions contain a significant amount
of orientation information, which support the users to orient themselves regarding known
environmental information, and it was shown that orientation information support the
acquisition of survey knowledge. Thus, there is a need to extend the landmarks selec-
tion to automatically select orientation information. In this work, we present an algorithm
for the computational selection of route dependent orientation information, which extends
previous algorithms and includes a salience calculation of orientation information for any
location along the route. We implemented the algorithm and demonstrate the functionality
based on OpenStreetMap data.

Keywords: orientation information, algorithm, navigation, wayfinding support, land-
marks, survey knowledge

1 Introduction

When asked for a route description, humans naturally refer to landmarks and orientation
information to help the navigator to orient themselves and find their way [3]. In contrast,
wayfinding support systems rarely incorporate orientation information, i.e., information,
including local and global landmarks, that supports people to derive their position in space
and orient themselves regarding known environmental information [32, 37], but rather rely
on metric information which is communicated to the navigator step-by-step at the required
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locations along the route. While the broad availability of these systems fundamentally
changed peoples’ wayfinding behavior, it was shown that this has negative consequences
on human spatial abilities [5, 21, 31, 41]. During car navigation, people tend to blindly
follow the instructions of the navigation devices without active engagement with the en-
vironment, which makes them unable to orient themselves even after recurrent drives [4].
However, recent research has shown that the accentuation of orientation information has
a significant effect on peoples’ spatial knowledge acquisition during wayfinding. When
people are presented with global and structuring information during navigation, this infor-
mation is automatically learned, which leads to a positive effect on peoples’ survey knowl-
edge [37].

Previous research proposed computational methods to identify the most salient land-
marks at decision points and presented approaches to automatically incorporate these
landmarks in routing instructions. However, the proposed solutions ignore the importance
of context and are restricted to the selection of point-like landmarks at decision points.
There is the need for an algorithm to automatically select the most salient environmental
features for any location along a route and different contexts, e.g., conveying orientation
in the local or global context. Orientation information, which includes local and global
landmarks and even structuring features, like environmental regions, supports people to
orient themselves in the current context. In this paper, we present an algorithm to se-
lect orientation information candidates from spatial databases and calculate the salience of
these candidates for the current route context (Section 4). While this aligns with research
that investigates means to better support survey knowledge acquisition and evaluates the
conceptual perspective (e.g., [4, 37, 40]), this work aims to develop a computational method
for automatically selecting route dependent orientation information. The solution might be
used as a basis for future empirical research. Moreover, we discuss how the algorithm can
be modified and implemented into navigation support systems. Although similar methods
and solutions might be applicable for different modes of travel, we focus on car navigation
and do not concern ourselves with the specifics other modes of travel such as pedestrian
navigation. As proof of concept, we implement the algorithm and demonstrate the selec-
tion and salience calculation based on OpenStreetMap (OSM) data (Section 5). We review
and discuss the results in the light of the extendability and generalizability of the algorithm
(Section 5.2).

2 Related works

2.1 Algorithms for the salience calculation of landmarks

In the past, several methods were developed to investigate the salience of landmarks and
to automatically include the most salient landmarks in wayfinding instructions. Existing
algorithms, however, only consider the selection of point-like landmarks at decision points,
whereas areal landmarks were only considered conceptually. Sorrows and Hirtle [54] re-
viewed the nature of landmarks and proposed to distinguish visual, cognitive, and struc-
tural landmarks, which affect users’ navigation in space in different ways. Moreover, they
discussed that these categories are not discrete, but landmarks can have properties of all
three categories and the best landmarks are the ones that are prominent in all three cate-
gories. Building upon this, Raubal and Winter [46] proposed measures to formally assess
the salience of landmarks at decision points. They defined measures for visual, semantic,
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and structural salience to assess the overall salience of a landmark. For the visual salience,
they considered the facade area, the shape, the color, and the visibility of objects and calculate
the prominence of the objects in terms of these metrics. With these metrics, they focus on
buildings and point-like landmarks, which, however, would not apply to areal landmarks
or regions. For the semantic salience, they evaluated the cultural and historic importance as
well as explicit marks that specify the semantics of the object. For the structural salience,
Raubal and Winter [46] assessed the importance of the location of the landmarks with re-
spect to nodes, i.e., the degree of intersection and category of connecting edges, and bound-
aries, i.e., objects that separate the street networks. The main shortcoming of this work
is the independence of the route; the salience of landmarks is only assessed for separate
locations, i.e., intersections, and only local landmarks in the immediate surrounding are
considered. Moreover, the solution is not transferable to different feature types like areal
landmarks or regional structures.

Winter [59] extended Raubal and Winters [46] measures with the advance visibility,
which calculates the visibility of landmarks for a person approaching a decision point.
They showed that this measure improves the suitability of the selected landmarks. Simi-
larly, Caduff and Timpf [6] presented a framework for the assessment of landmarks salience
in the visual field. They proposed that the landmarks salience is based on the trilateral rela-
tionship between observer, environment and geographic object. They evaluate the overall
salience of visual landmarks in terms of (i) their perceptual salience, which is based on the
visual sensory input, (ii) the cognitive salience, which is based on the prior knowledge of
the individual, and (iii) the contextual salience, which is based on the amount of attentional
resources in the visual field. While the visual salience of features is an important aspect for
navigation support, the structural salience of environmental features can be considered as
more important for supporting orientation [24]. This, however, was only marginally con-
sidered in the presented approaches. More follow up research was presented by Klippel
and Winter [30], Claramunt and Winter [7], and Quesnot and Roche [44]. Klippel and
Winter, and Claramunt and Winter investigated the structural salience of environmental
features. Klippel and Winter presented a taxonomy of point-like landmarks with respect to
their position along the route, extending the wayfinding choremes theory [29, 30]. Clara-
munt and Winter described a generic model of structural salience of environmental features
in route directions, which is based on network analysis and space syntax measures [7, 19].
Quesnot and Roche presented a measure of semantic salience of landmarks based on volun-
teered geographic information [44].

Elias [13], Duckham et al. [12], and Rousell and Zipf [48] investigated how to automat-
ically select the most salient landmarks from spatial databases. Elias [13] presented an
algorithm to automatically derive landmarks from spatial databases based on data min-
ing methods. They browse spatial databases and fill a predefined catalog with real data.
Landmarks are identified based on this catalog by applying ID3 [45] and Coweb [14] algo-
rithms. They showcase their solutions based on a test dataset of cadastral data. Duckham
et al. [12] presented an algorithm to automatically generate verbal route instructions that
incorporate the most salient landmark at decision points. Their core model is based on
feature categories of spatial databases. They assess the salience of potential landmarks by
(i) evaluating the suitability of a typical instance of a POI category to be a landmark, and
(ii) evaluating the likelihood that a particular instance of a POI category is typical. To
make the algorithm more generic, they discuss three extensions of the core model: the cat-
egory weight might depend on the navigation context, e.g., mode of travel; the side of the
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street with respect to the decision points (features that lie on the same side as the turn are
weighted higher); in case multiple landmarks of the same category are in the candidate set,
only the first instance of the category will get the full weight, whereas the others are dis-
missed. Rousell and Zipf [48] presented an approach to automatically extract landmarks
for pedestrian navigation from the OSM database. Their method is based on a number
of metrics that are used to assess the overall salience of landmark candidates at decision
points. In line with Duckham et al. [12], they specify feature category weights and consider
the location of the features in relation to the direction of travel (opposite side, same side).
Similar to the multiple landmarks metric of Duckham et al. [12], they specify the unique-
ness of features, i.e., if multiple features of a category are in the candidates set, all features
get reduced weights. Additionally they present metrics for the visibility, the position of the
feature in relation to the decision point (before, alongside, after), and the distance. Besides
the selection and salience calculation of environmental features, approaches for including
landmarks and other contextual information in route directions were presented. Klippel
et al. developed different data structures for cognitive ergonomic route directions [17, 26]
and presented approaches for chunking route instructions [28]. Klippel et al. described
different chunking types, which, however, mainly aim to improve the navigation support,
e.g., numerical chunking and landmark chunking. Only structure chunking might be rel-
evant for the current work, however, the authors did not present an algorithm for this
type of chunking. Other approaches considered the prior knowledge of the navigator and
developed formal models for generating personalized route instructions [43, 49, 57].

While the presented approaches are useful for enriching wayfinding instructions with
local landmarks, the main shortcoming that was not considered over the years is the lim-
itation to the features selection at intersections and decision points. It was shown that
landmarks are not only important locally at decision points, but also along the route and
even globally when distant to the route [1, 33, 34, 55]. The visual salience of landmarks at
decision points is an important factor for navigation support, however, structural salience
might be the more important factor when calculating the salience for orientation support.
Moreover, it is criticized that current approaches focus on point-like landmarks, neglecting
regional landmarks or structural regions [35, 51]. In the existing approaches, regions were,
if at all, only considered conceptually, however, no algorithms were presented to calculate
the salience for regional landmarks or structural regions. Sester and Dalyot [52] pointed
out that, besides local route information, information should be provided, which embeds
the route in the global context; Löwen et al. [37] showed that besides landmarks, struc-
tural regions are important features in human wayfinding. This orientation information
was shown to support the acquisition of survey knowledge [37]. There is a need for an
algorithm to automatically select the most salient orientation information; moreover, the
algorithm should not be restricted to the selection of local features at decision points but it
should automatically select orientation information for any location and context along the
route.

2.2 Orientation information in context

Orientation is defined as “a dynamic process of deriving one’s position in space with re-
gard to known environmental information at a scale (or subset of scales) relevant to the
current goal” [32]. This definition highlights the location and the scale as two main aspects
of orientation. In an assisted wayfinding scenario, for which we aim to automatically select
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orientation information, the location is not fixed, but changing with regard to the users’
drive along the route. Thus, the location is one important contextual parameter. Addition-
ally, orientation is related to a scale relevant to the current goal. In previous work, a classifica-
tion scheme of functional scales in assisted wayfinding was developed, where a conceptual
distinction of scales with respect to different goals in assisted wayfinding scenarios was
proposed [36]. Maps at different scales might target different tasks such as supporting
the identification of a decision point or providing an overview of the local or global route
context. The functional scales are distinguished with respect to their role in supporting
wayfinding and orientation and the containment of features relevant for different aspects
of navigation [36]. The authors distinguish the scales intersection, neighborhood, city, region,
and route overview. While the intersection scale depicts the decision point at a large scale and
requires detailed information about the decision point, the map scales of the neighborhood,
city, and region scale are described to be relative to the size of the particular environment
(neighborhood, city, region) and maps should depict information for supporting the un-
derstanding of these environments. The route overview scale combines information of the
previous scales to support the understanding of the global route context. Consequently, en-
vironmental features that are depicted in the particular maps need to be selected to support
the task in the best possible way. For the scope of this paper, we consider the functional
scales as a second important contextual parameter, which defines the relevant size of the
environment and the representation of the map.

Functional
scale

Information
content

Function in
wayfinding support

Related
cartographic
scale

Related
psychological
scale

intersection – detailed information about DP
– building information
– local landmarks
– full street network

– identification of DP
– local orientation
– understanding of visual
information at DP

fixed large scale * vista space

neighborhood – information about local context
– local & global landmarks
– full street network
– structural regions ≤
neighborhood

– understanding of local route
context
– understanding of surrounding
connections

relative to size of
neighborhood

environmental
space

city – information about global context
of city
– global landmarks
– main street network
– structural regions ≤ city

– understanding of global city
context
– understanding of city
structure and main connections

relative to size of
city **

environmental
space

region – information about global context
of the region
– main street network
– structural regions ≥ city

– understanding global region
context
– understanding of main
connections through region

relative to size of
cities and regions

geographical
space

route
overview

– combined information from
neighborhood, city and region scale

– understanding of the global
route context
– getting overview of whole
route

relative to length
of route

* E.g., for an average 5 inch smartphone screen this relates to a map scale of 1:1.000–1:3000.
** E.g., for the city of Münster, western Germany, this relates to a map scale of 1:100.000–1:200.000.

Table 1: Functional scales in wayfinding support (reproduced from Löwen et al. [36]).

In the following, we present an algorithm to computationally select orientation infor-
mation for any point along the route. We extend previous approaches, i.e., we incorporate
previously presented metrics, which were discussed above; we develop new metrics for
the salience assessment that is not restricted to point-like landmarks and decision points
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only. We parameterize the salience function to the context, i.e., the current location along
the route and the target scale.

3 Theory

Landmarks were shown to be important features in human wayfinding and key features in
spatial cognition. Although landmarks are defined to be any geographic object that struc-
tures human mental spatial representation [47], landmarks are dominantly considered as
point-like objects such as a specific building. Because of their importance to structure hu-
man mental spatial representation, landmarks are often used in human communication. It
was shown that people include local landmarks at decision points and along the route, as
well as global landmarks off-route [8, 9, 33, 34, 39, 55, 56, 60]. Anacta et al. [3] presented em-
pirical evidence that human wayfinding instructions contain a significant amount of orien-
tation information, i.e., information that supports people to derive their position in space
and orient themselves with regard to known environmental information [32]. We previ-
ously developed a classification scheme of orientation information that specifies feature
types and features roles in route maps [36]. The feature types landmarks, network structures
and structural regions are distinguished, moreover, the role features might take with regard
to the route, i.e., local or global, is specified [36].

Landmarks can be any point-like, linear, or areal object in the environment and may be
relevant in the local or global context of a route. Network structures are defined as the rele-
vant street network to be selected for orientation support. This might be on the one hand
the network skeleton constituting the overall structure of the street network (global context)
and on the other hand the route relevant network including side streets and detailed net-
work related to the route (local context). Structural regions comprise administrative regions
and environmental regions, which are relevant for the global context of the route. They were
shown to support incidental spatial learning of survey information when included in route
descriptions [37]. Whereas areal landmarks are separate geographic objects with an areal
extent, structural regions are in contrast defined by their bona fide or vague boundaries (en-
vironmental regions), or fiat boundaries (administrative regions) [15,53], which might have
containment relations with other features. Environmental regions have a semantic mean-
ing, which refers to some kind of homogeneous and perceivable environmental structure,
such as urban vs. rural areas or a city center. Administrative regions might only be per-
ceivable in the environment through signage or external reference. The example of a city
might be considered twofold: on the one hand, a city has a clearly defined administrative
boundary, which is apparent via signage; on the other hand, and not necessarily corre-
sponding, a city might be considered as the build area in contrast to the surrounding rural
area. Structural regions are rarely incorporated in current navigation systems; however,
they can be useful features for supporting orientation by helping users to structure their
mental spatial representations [36].

The challenge for the automatic selection of environmental regions is the availability
and identifiability in spatial databases, as common data structures require unambiguous
feature representation. Although there are methods for the computational modeling of
places with unclear extent [20, 50], environmental regions, especially vaguely defined re-
gions, are often not available in spatial databases. Computational modeling of vague re-
gions is mainly done for spatial reasoning, whereas methods for automatic detection in

www.josis.org

http://www.josis.org


SELECTION OF ORIENTATION INFORMATION 143

spatial databases do not exist. Moreover, the perception of regions and region boundaries
is strongly tight to human perception and cognition, which might not coincide with the
results of the computational models. Tomko and Winter [58] analyzed the functional rela-
tionships between elements of the city in order to model the spatial knowledge of wayfind-
ers. In this line, novel methods for detecting regions from spatial databases for wayfinding
purposes would be required. The algorithm that is presented here assumes a candidate
selection based on the theoretical concept of structural regions, as it was described above.
In Section 5.1 we demonstrate and discuss the selection of structural regions from OSM.
The candidate set will be refined with respect to the salience in a particular context, which
we elaborate in the following section.

While we focused on cognitive aspects for orientation support and spatial learning in
previous work, in this work we focus on the computational aspects to automatically select
orientation information. Therefore, we adhere to the classification scheme of orientation
information and present a selection workflow that consists of two main steps: in a first
step general orientation information candidates are selected within a reasonable distance
buffer around the route; in a second step the candidate set is refined with respect to the
context, i.e., locational and scale context. Different communication modes for wayfinding
support exist, however, for the proof of concepts we focus on the visual representation of
orientation information on wayfinding maps.

4 Algorithm

We implemented the following workflow to select orientation information for the visual-
ization in orientation maps; we stepwise add information to the selection (see Figure 1). As
described above, the relevance of environmental features for orientation support depends
on the users’ context in terms of the location and the scale. We initially analyze the route
to better define the route context. We analyze the route in terms of the type of streets, the
distribution of decision points, and the functional scales (Section 4.1). We then select the
relevant street network for supporting orientation (Section 4.2). Current navigation systems
only reduce the level of detail of the represented features with decreasing map scales. We
expect that a selection and an accentuation of the main street network will help users to
structure their mental spatial representations of space. Thus, in Section 4.2 we elaborate a
context-dependent selection of the street network. Finally, we select landmarks and structural
regions to embed the route into the context (Section 4.3). Therefore, feature candidates are
selected from spatial databases (Section 4.3.1), which are then refined with respect to the
salience metrics that will be described in Section 4.3.2.

4.1 Route analysis

The route may be computed with any existing metric ranging from classical shortest paths,
such as Dijkstra [10] or A* [18], to cognitively motivated algorithms, such as simplest paths
[11,38] or fewest-turns [22]. The street network is organized with respect to the function and
capacity of the streets; this often corresponds to the administrative category of the streets.
Specifications differ between countries and states, but generally, the following distinction
can be made: (i) highway; (ii) primary, secondary, and tertiary roads, which link cities,
towns, and villages; (iii) residential roads which provide access to property. Special street
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Figure 1: Flowchart of the algorithm. For the description see introduction of Section 4. For
details on the separate steps see the respective subsections.
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types are disregarded in the current work. The street types are hierarchically ordered as
shown in Table 2 (lower values represent a higher order in the hierarchy).

Value Type
10 highway
20 primary road
30 secondary road
40 tertiary road
50 residential road

Table 2: Types of street segments (T ).

DP class DP class description
0 start/destination
1 straight on
2 turn not at a junction
3 turn at a t-junction
4 turn at a junction
5 turn at a roundabout
6 highway ramp/exit

Table 3: Decision point classes (DPC).

The route is analyzed in terms of the hierarchy of the route segments, and the location
and distribution of decision points along the route. Routes often have a typical structure
with respect to the type of route segments, i.e., increasing hierarchy at the initial part of
the route and decreasing hierarchy at the final part of the route [61]. The route structure
is utilized for the further selection and embedding of the route in its spatial context. Some
of the above-mentioned metrics consider the route structure in the route computation, e.g.,
natural roads [23] consider the Space Syntax theory [19].

The street network is represented as a graph G = (V,E) consisting of a set of vertices
(V ) and edges (E), and a route as a directed graph G′ = (V ′, E′) ⊆ G from start s ∈ V
to destination t ∈ V . Each edge e ∈ E is defined by two incident vertices x, y ∈ V . Each
route consists of a set of decision points DP ⊆ V ′. Decision points are defined by a set
DPC of decision point classes (see Table 3), represented by a function class : DP → DPC,
such that for all v ∈ DP, class(v) = c, with c ∈ DPC. Street types are defined by a set T ,
represented by a function type : E → T , such that for all e ∈ E, type(e) = t, with t ∈ T (see
Table 2).

Table 3 presents the decision point classes that are used for the analysis of decision
points along the route; these were presented in previous work [2]. Straight on classifies
decision points where the route continues straight but intersects street segments of the
same or higher hierarchy class. Turn not at a junction classifies only vertices v ∈ V ′ with
degree(v) = 2 that require a turn, i.e., there are no side streets but the angle of connect-
ing edges exceeds a predefined threshold. Highway ramp/exit specifically classifies vertices
v ∈ V ′ of highways, i. e., ramps, exits, connections; thus type(e) = 10 with e ∈ E′ and e
incident to v. The distribution of decision points along the route as well as the reference
segments are used for a further selection of environmental features. Reference segments are
considered as route segments before and after a particular decision point. They may either
be calculated based on a predefined static distance, or a variable distance based on the
decision point class, the functional scale, etc. Here, we calculated the reference segments
with a predefined static distance of 100 meters.

4.2 Network structures

Network structures are defined as the relevant street network to be selected for orientation
support. This might be, on the one hand, the network skeleton constituting the overall struc-
ture of the street network (global context). On the other hand, it might be the route relevant
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network including side streets and detailed network related to the route (local context) [37].
For the analysis and the selection of the relevant street network, we define the following
functions:

• connected(x, y) tests if edges x ∈ E and y ∈ E point to the same vertex v ∈ V .
• weight_connected(x, y) tests if connected(x, y) and weight(x) ≥ weight(y). For the
weight(), any numeric attribute of x and y can be chosen; e. g., the route type (hierar-
chy) of the edge (see Table 2).

• depth(x) calculates the fewest number of connections of edge x to any edge e ∈ E′ of
the route.

• weight_depth(x) calculates the fewest number of connections of edge x to any edge
e ∈ E′ with weight(x) ≥ weight(e).

With these functions, the forthcoming operations can be performed. Based on the specific
route context, different parts of the adjacent route network will be considered as relevant
and will be automatically selected.

Buffer The surrounding street network is reduced with respect to the users’ context, i.e.,
the network is reduced to a buffer B around the current location l ∈ L with a maximal
distance MDf , depending on the functional scale f .

Depth The depth metric selects all adjacent street segments to the route up to a pre-
defined depth. This is also referred to as topological distance towards the route. The set
Dn is the set of edges e ∈ E, for which depth(e) = n. Thus,

∑n
i=1 Di is the sum of the

selected network up to the maximum depth n. Depending on the functional scale, the
adjacent street network is refined with respect to a specified depth.

Weighted depth Similarly, it might be necessary to select adjacent street segments of the
same or higher weight with respect to the connecting route segment, i.e., weighted depth.
When driving on a primary road, side streets of a lower hierarchy would for example not be
considered as relevant, whereas intersections with streets of the same or higher hierarchy
are relevant to be selected. Consequently, the set WDn represents the set of edges e ∈ E,
for which weight_depth(e) = n.

Network skeleton We define the network skeleton as the overall street network of the
global route context with respect to the functional scale. The set NSw represents the set of
edges e ∈ E, for which weight(e) ≥ w, with w ∈ H (hierarchy classes, see Table 2). Like
the other metrics, parameters of this function have to be specified with respect to specific
contexts, when being implemented into actual systems. We assume, that at the city scale
streets of the lowest hierarchies will not be relevant for conveying orientation, whereas at
the neighborhood scale streets of lower hierarchies are considered part of the relevant net-
work. This will be evaluated in future work.
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4.3 Landmarks and structural regions

4.3.1 Candidate selection

As mentioned above, first, feature candidates for landmarks and structural regions are
selected from spatial databases. In a second step, the candidates will be refined with respect
to the salience metrics that will be described in Section 4.3.2.

In spatial databases, individual features are usually attributed to different feature cat-
egories, such as shops, parks, etc. For the candidate selection, relevant feature categories
need to be specified considering the data structure of the selected spatial database. This is
in line with previous research (e.g., [12,48]). Previous work also considered human subject
ratings of separate feature instances as a source for salience calculation [43, 44], however,
the authors already pointed out the limitation with respect to the availability and scalabil-
ity of datasources, especially when considering the personal dimension of feature salience;
thus human subject ratings may only indirectly incorporated through the category weights
in the current approach. All features of the specified categories that lie within a reasonable
distance to the route, are considered as feature candidates. When selecting landmarks from
spatial databases, the candidate set might include a large set of landmarks, thus the main
requirement is to calculate the salience of separate landmark candidates.

4.3.2 Core selection metrics

In the previous section, we described the general selection of orientation information candi-
dates from spatial databases, regardless of their relevance and salience for a specific context
within a wayfinding scenario. The selection of environmental features needs to be refined
with respect to their salience for a specific context, i. e., the users’ location along the route
and a specific functional scale f ∈ F at which the orientation information will be presented.

We define the salience function Sf for a weighing of the candidate set CS with respect
to their salience at the functional scale f ∈ F . In the following, we describe the core set
of metrics that are used for the overall salience weighting. These metrics relate to the clas-
sification of visual, semantic, and structural salience of environmental features [46, 54]. The
presented metrics are functions that depend on the route context, i.e., the location and the
functional scale, and are applied to the candidate sets of structural regions as well as land-
marks. The metrics are not exhaustive, but additional metrics can be developed and added
to the overall salience function Sf . In Section 5.2.2 we discuss a few possible extensions of
the salience function.

Buffer Depending on the context, only a limited area around the current location along
the route will be relevant, which relates to the area of the map that will be shown on the
map during wayfinding and navigation. Thus, we refine the candidate set to a buffer
around the current location l ∈ L with a maximal distance MDf . The buffer distance
depends on the functional scale f ∈ F , which has to be specified for the specific use case.
The buffer metric is calculated as

Bf =

{
1, for dist(l, c) ≤MDf

0, for dist(l, c) > MDf

}
with c ∈ CS.
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Category weights The salience of different feature categories might differ with respect
to the suitability for orientation support, thus category weights might be assigned to the
feature categories of the candidate set, such that weight : C → [0, 1] (see [12, 48]). C is a
set of categories, such that for every c ∈ C, weight(c) is the normalized salience of that
category, with weight(c) = 1 most salient and weight(c) = 0 least salient. The category
weight might vary with respect to the functional scales, such that

Scf = weight(cf )

is considered as the salience of any candidate of category c ∈ C at the functional scale
f ∈ F .

Relation In addition to the salience of the feature category, we specify the relation of a
candidate towards the route. The salience of a candidate might be considered as higher
when located at decision points compared to features located along the route. Thus, we
weight candidates with respect to their relation to the route. We identify for every c ∈ CS
the nearest point on the route. We consider c as located at decision point, if the nearest point
on the route intersects with the reference segment of the decision point (see Section 4.1).
The relation metric R is calculated regardless of the functional scale:

R =

{
1, for c at decision point
0.5, for c along the route

}

Uniqueness If several features of the same category exist within the candidate set, the
identification of a particular feature in the environment is more difficult. We, therefore,
determine the uniqueness of the features within the candidate set (see [48]). The uniqueness
is calculated by

Uc = 1/nc

where Uc is the uniqueness of a feature of category c ∈ C and nc is the number of features
within the candidate set with category c. With this calculation, unique features of a category
will get the value 1, whereas multiple occurrences reduce the value (two features of the
same category will both get the value 0.5).

Distance To distinguish local and global features, we calculate the distance of the candi-
dates towards the route. The distance metric assigns lower values for more distant features,
assuming that the salience of features decreases with increasing distance. Consequently,
global landmarks need to be more salient with respect to the other metrics to get a higher
overall salience, e.g., high category weight and uniqueness. We define the distance metric as

Df = 1− dist(r, c)/MDf

with r = route, c ∈ CS and dist as the euclidean distance of the candidate to the route.
For structural regions, linear landmarks, and areal landmark, the closest point to the route
on the perimeter of the features is calculated. With MDf as the scale-dependent maximum
buffer distance, the distance metric decreases linearly within the selected buffer.
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Direction In line with considering the location context for the salience weighting, the
direction of travel is specified, giving additional structure to the context. When following a
route, directions are distinguished with respect to the orientation of the user at the current
location, e.g., similar to Klippel and Montello’s ( [27]) turn directions. The relative direction
of any candidate will be specified with respect to the current location and orientation as to
the front, to the left or right, or to the back. We, in general, expect that features that are to
the front of the current location are more relevant than features that were already driven
past. We define the distance metric as

O =

 1, for c to the front
0.5, for c to the left or right
0.1, for c to the back


Overall salience The overall salience of the candidates with respect to the functional scale
f ∈ F is calculated as

Sf = Bf ∗ (ws ∗ Scf + wr ∗R+ wu ∗ Uc + wd ∗Df + wo ∗O)

with ws, wr, wu, wd, wo > 0 and
∑

w = 1. With respect to the salience classes of Sorrows
and Hirtle ( [54]), we relate the uniqueness to the visual salience, the buffer, the distance, the
direction, and the relation to the structural salience, and the category weight to the semantic
salience. The weights ws, wr, wu, wd, wo provide the possibility to control, adjust, and op-
timize the influence of the particular metrics. While the buffer metric is multiplied, thus
makes a selection of features within the specified maximum distance of the current loca-
tion, the other metrics are summed up, thus have a linear influence on the overall salience.
We do not aim to provide a fixed salience function, but an algorithm that can be adjusted
to the specific use case. Thereby, other researchers get the possibility to place weights with
respect to their interpretation of empirical findings. In the following, we showcase a proto-
typical implementation where we selected orientation information candidates from OSM
and applied the salience function Sf to the candidate sets based on predefined weights and
functional scales.

5 Implementation and evaluation

In previous work, open data from OSM was used for the selection of landmarks (e.g.,
[16, 48]). In this section, we demonstrate the previously presented selection workflow
and salience weighting for orientation information using OSM as a data source. The al-
gorithm was implemented based on a PostgreSQL database for data storage and SQL and
Python for the implementation and visualization. We developed a QGIS plugin (http:
//planet.qgis.org/plugins/orientationMapsCreator/) which implements the functionality
and can be used to calculate a route, specify the location and context for which to select the
orientation information, and run the selection algorithm. We used the plugin to automati-
cally generate the maps shown in Figures 2 and 3. An example route in western Germany
was chosen, which covers the area of two cities of approximately 50K residents and the ru-
ral area in between; the route was analyzed as described in Section 4.1. Our selection and
salience weighting depend on the contextual input, i.e., a location along the route and the
target scale for the map. As means of demonstration, we selected two distinct parts of the
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route, i.e., the start and the end of the route. For each part, we selected three prototypical
locations along the route and specified the functional scales (see Figure 2). The locations
were manually selected based on the authors subjective judgment in order to represent the
area of an intersection, a neighborhood, and a city.

In the following, we describe the selection from OSM and apply the salience weighting.
Previously, methods to assign category weights based on expert ratings (see [12]) and meth-
ods to objectively retrieve category weights, e.g., from web-harvested data (see [13, 25])
were used. A sophisticated category weighting is out of scope for the current work, thus we
manually assign category weights based on our subjective interpretation, taking into con-
sideration previous suggestions. In addition to the category weights, the overall salience
function provides parameters for weighting the different metrics. The weighting param-
eters may be used to optimize the salience weighting with respect to empirical results or
expert ratings. Different weights will influence the results of the salience function and they
might even have to be optimized with respect to the influence of the metrics at different
scales. We apply equal weights for demonstration purposes. Moreover, to demonstrate
the influence of the separate metrics of the algorithm, we systematically varied the metric
weights and demonstrate the results for one of the previous cases in Figure 4. In Section 5.2,
we present and discuss the results of the algorithms. It is important to note, that the results
might not be the correct selections from the conceptual perspective, however, the aim is to
demonstrate the functionality of the algorithm. Future work needs to optimize the input
parameters of the algorithms to generate cognitively adequate results.

5.1 Feature selection from OSM

Several researchers presented methods to select landmarks from OSM by specifying OSM
tag lists (e. g. [16,48]). Although this is very selective and despite the limited availability of
environmental regions in spatial databases, we use the specification in Table 4 for the can-
didate selection of administrative regions (AR) and environmental regions (ER) from OSM.
Environmental regions are either defined by their boundary tag (protected_area, landuse, mar-
time, national_park) or by their landuse tag. For the former we chose the most frequent values
that can be considered as ER from OSM taginfo (https://taginfo.openstreetmap.org/keys/
boundary#values); besides, the boundary tag contains many specific keys for different kinds
of boundaries, e. g., political. For the latter we consider all values of the landuse tag as po-
tential candidates of environmental regions. In addition, we assign category weights as
shown in Table 4. After selecting region candidates and running the algorithm for calculat-
ing the feature salience, the results are highlighted on a map for visual interpretation (see
orange regions in Figure 3).

Similarly, we specify OSM tags for the selection of landmark candidates, which are
shown in Table 5. The classification scheme we referred to in Section 3, distinguishes point
landmarks (PL), linear landmarks (LL), and areal landmark (AL). The OSM data structure,
which consists of nodes, ways, and relations, however, does not correspond to the conceptual
classification of different landmark types. Many polygonal features in OSM (closed ways)
depict the boundary of buildings, thus would be processed as areal landmark candidates
by the algorithm. Thus, we consider it as important to review the data source, pre-process
it if applicable, and adjust the implementation of the algorithm to the data set. The results
that are shown in Figure 3 are restricted to the peculiarities of the OSM data.
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Figure 2: Selection of location (red marks) and target scales (red frames) for the selection
and refinement of orientation information; top: case 1; bottom: case 2.
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152 LÖWEN, SCHWERING

Key Value Requirement Type Description Weight

boundary administrative admin_level = * AR administrative boundary 1.0

boundary protected_area - ER boundary of 0.8
landuse - ER environmental region 0.3
maritime - ER 0.8
national_park - ER 0.8

landuse * - ER environmental region 1.0

Table 4: OSM tags related to structural regions

Key Value Requirement Type Description Weight

amenity * name AL,PL amenities 0.5
leisure * name AL,PL 0.5
tourism * name AL,PL 0.7
historic * name AL,PL 0.8
shop * name PL 0.3

barrier * height OR
fence_type OR
description

LL physical structure which
blocks or impedes move-
ment

0.1

highway * bridge=yes,
tunnel=yes

LL,PL transport related land-
marks

0.5

bus_stop - PL 0.1
crossing - PL 0.3
rest_area - PL 0.6
services - PL 0.4
traffic_signal - PL 0.3

junction roundabout - PL 0.6
railway rail - LL 0.7

crossing - PL 0.5
level_crossing - PL 0.5
platform - PL 0.5
station - PL 0.5

waterway * - LL 0.7

natural * name AL,LL,PL natural landmarks 0.3

Table 5: OSM tags related to landmarks

To perform the network selection (Section 4.2), the OSM data is pre-processed to gener-
ate a routable graph. We use the osm2po tool (http://osm2po.de/) to pre-process the OSM
data and save it to a PostgreSQL database. We implemented functions based on Postgis
(https://postgis.net/) and pgRouting (https://pgrouting.org/) functionality to analyze the
graph as described in Section 4.1.

5.2 Results and discussion

We ran the algorithm to select feature candidates and refine the selection with respect to
the salience function and the specified contexts. We ran the algorithm once for each of the
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selected locations and target scales. The input values of the algorithm remained the same
across the different runs of the algorithm. In Figure 3 the results of the algorithm are shown.
Moreover, Tables 6 and 7 list the results of the single metrics as well as the final salience
value. The results are dependent on the chosen data basis and the specified weights, thus
might not correspond to feature selections based on empirical investigations.

In the top left and middle left map (case 1), part of the residential area is highlighted (or-
ange polygon), which was selected as the most salient environmental region at that scales.
However, in the bottom left map, the residential area was not selected. When closely re-
viewing the separate results of the salience metrics, it turned out that the residential area
got a low weight for the uniqueness metric; this is due to the OSM data structure which
in this case stored the residential area as many separate small regions instead of a single
large region. Similarly, we see that separate parts of the residential area were selected
in the bottom right map, i.e., case 2. The respective uniqueness values are shown in Ta-
ble 7. The fragmentation and granularity of OSM data depend a lot on the contributors,
thus no consistency can be expected. Moreover, for the bottom left map and the middle
right map, many small features were selected as environmental regions (orange polygons),
which would not necessarily be defined as regions. This is due to the availability of en-
vironmental regions in spatial databases, as it was discussed above; a more sophisticated
description of potential region candidates would have to be specified when working with
OSM data. To prioritize larger regions that would help to better structure the environment,
the coverage metric, which is described in Section 5.2.2, might be considered for the salience
function.

For linear landmarks, a river (top left, middle left, and bottom right map) and rails
(middle left and bottom left map) were selected. However, in the middle and bottom map
it can be seen that only part of the features were selected. This again refers to the underly-
ing data structure; linear features are often divided into many features, thus the algorithm
separately weights every feature. Point landmarks (red stars) and areal landmarks (green
polygons) where separately selected and weighted, however, in the results the concep-
tual difference between these feature types seems not clear. In OSM a landmark might
be mapped as a tagged point or as a polygon when for example specifying the building
footprint; quite often even both exist.

Furthermore, the direction metric was used to prioritize features in front of the current
location. The resulting maps of case 1 (Figure 3 left) support the influence of this metric
showing that predominantly features in front of the current location are highlighted. This
is supported by the values of the direction column in Table 6. The resulting maps of case 2
(Figure 3 right) differ especially in the bottom map. At this scales, most features lie to the
back of the current location, which can also be seen in the direction column of Table 7. While
the direction metric prioritizes features to the font of the current location, the availability
of the features in combination with the other metrics needs to be considered here. In the
bottom right map the car is leaving the city, thus the most salient features of the city lie
to the back of the current position. Consequently, the other metrics were stronger than
the direction metric in this case. However, the weights of the metrics might be adjusted if
required.

In general, it might be argued that the applicability of the metrics depends on the target
scale. For the intersection scale (top maps) only features in front of the current location
would be considered as relevant, thus the direction metric should be weighted higher for
this scale. In contrast, for the city scale (bottom maps) the weighting might have to be ad-
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Figure 3: Results for the three prototypical contexts and two use cases. Features are
highlighted as follows: administrative regions–gray, environmental regions–orange, point
landmarks–red, linear landmarks–blue, areal landmarks–green.
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justed towards a lower priority of features to the front. Similarly, the relation metric, which
prioritizes the relation towards a decision point, might be more relevant to be included in
the overall salience function for larger scales, e.g., when identifying the salient features for
the intersection scale.

To demonstrate the influence of the separate metrics of the algorithm, we systematically
varied the metric weights and demonstrate the results for one of the previous cases, i.e.,
case 1 neighborhood, in Figure 4. The neighborhood case was chosen, because we expected
that the influence of the different metrics weights would be better visually comprehensible
from the maps, compared to the intersection and city scale. Previously, equal weights for
the salience metrics were applied, i.e., ws, wr, wu, wd, wo = 0.2,

∑
w = 1. We systematically

assign a weight of 0.8 to each of the metrics, whereas each of the other metrics gets a weight
of 0.05. We ran the algorithm once for each of the five cases; the input of the algorithm
remained the same, except for the metric weight. The topmost features for each feature
type were selected and visualized.

While there are overlaps in different cases, there are also differences resulting from the
different weights. The biggest difference can be seen when assigning a high weight to the
distance metric above the other metrics; clearly, features get selected that are closer to the
current location, compared to the other cases. Slight differences appear in the results when
assigning a high weight to the direction, i. e., fewer features are selected that lie to the
back of the current location. Interestingly, few landmarks in the city center, i. e., Hotel, Bar,
Playground, Fountain, are selected in four of five cases. This suggests, that these features
have a high salience in all of the particular metrics, thus assigning a high weight to single
metrics does not introduce differences. A thorough analysis of the effects of the different
weights is our of scope for the current paper and should be done, if necessary,

5.2.1 General discussion

While we think that the presented algorithm can be implemented in any wayfinding sup-
port system for feature selection, a few peculiarities shall be discussed here, which were
revealed through the prototypical implementation and demonstration: (i) the influence of
the data basis; (ii) the influence of the metrics and metric weights; (iii) the influence of the
category weights.

The previous discussion of the results with respect to environmental regions and lin-
ear landmarks showed, that there is an influence of the data basis on the results, namely
the fragmentation of features which would subjectively be considered as a unit. When
working with OSM data, a pre-processing step is required to process the data into a con-
sistent data format and specifically adjust the salience weighting to the underlying data
basis. Generally, the contribution of this work is an algorithm that extends previous work
on the selection and salience weighting of landmarks; we especially add functionality for
the context-dependence and present an adjustable and extendable method based on sep-
arate salience metrics. When implementing the algorithm, the salience function has to be
adapted to the selected data basis and weights have to be specified with regard to empirical
evidence. Therefore, a thorough analysis of the effects of the different metric weights, as
prototypically demonstrated in the previous section, might be necessary in future work.

The results are not only dependent on the underlying data basis, but also on the chosen
salience metrics and metric weights. We suggested a set of salience metrics (Section 4.3.2).
Subsequently, we will discuss potential extensions (Section 5.2.2). As was discussed above,

JOSIS, Number 20 (2020), pp. 137–165
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Figure 4: Results the systematic investigation of different metric weights.

these metrics need to be chosen with respect to the use case, i. e., the feature types and the
context. We specified the context with respect to the functional scales, which we proposed
in a separate work [36]. Different contexts might serve different purposes, e.g., identifying
an intersection or conveying orientation within a city, thus different metrics and metric
weights have to be specified for the salience function with respect to the current purpose.
For identifying the most salient features at a decision point, different metrics might be used
than for identifying the most salient orientation information within a neighborhood or city.

Finally, for getting justifiable results, empirical evidence for the category weights is re-
quired, which generally specifies the salience of different feature types with respect to the
current purpose, not excluding human subject ratings (e.g., [43, 44]). Although previous
work investigated methods for specifying category weights for landmarks (e. g. [12, 25]),
the general salience of different environmental features (landmarks, network structures,
structural regions) in terms of orientation support needs to be investigated in future work.

5.2.2 Extended metrics

While we presented a core set of metrics for the salience weighting above, we want to take
to opportunity to discuss a few potential extensions. These might similarly be applied to
all candidates or only be applicable to separate feature types, such as structural regions
or landmarks. As described above, the core metrics are related to the visual, semantic, and
structural salience, which are evident in the literature. We believe that the core metrics
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suffice to model the overall salience of environmental features, however, additional metrics
might be added to the overall salience function Sf or replace previous metrics.

Connection Related to the relation and distance metric, the connection of candidates in
the candidate set might be specified, which also relates to the structural salience. The con-
nection might be distinguished in terms of the direct connection to the route, the connection
through the street network, or no connection to the route or street network. Thereby, also the
distinction between local and global landmarks can be made. Moreover, candidates can
be weighted differently with respect to their connection towards the route, prioritizing
directly connected features. In terms of the calculation, this metric would additionally
consider the adjacent street network.

Coverage When considering the visual representation, especially structural regions
might be too large to be visualized on the map, e.g., large environmental regions at the
neighborhood scale. Regions that cover the whole map extract will not be identifiable from
the map. Therefore, a coverage metric could be used, which weights the salience of regions
in terms of the amount of overlap with the current map. On the one hand, regions that
cover the whole map would be disregarded; on the other hand, the coverage would give
higher weights to more overlap, assuming that more overlap is structurally more salient.

Visibility Previous research evaluated the visibility of landmarks at intersections (e.g.,
[42,46,59]). The work might be extended with respect to the general visibility of orientation
information at decision points and along the route. While a visibility metric could easily
be integrated into the previously presented salience function, we see the main challenge
of this metric in the availability and processing of required data. Moreover, the visibility
might not even be a static value but would be context-dependent in many aspects, e.g.,
time of the day, time of the year, etc.

Distribution Especially for smaller scales that aim to provide an overview of the environ-
ment or an overview of the whole route, it might be necessary to consider the distribution
of the selected features to avoid too much overlap and empty spots in the resulting maps.
Thus, the salience of feature candidates would also depend on the location of previously
selected candidates and higher weights could be assigned to features that are more distant
to other features.

6 Conclusions

Previous work presented algorithms for the selection of the most salient landmarks at de-
cision points. However, it was shown that not only landmarks but orientation information
are important features in human spatial cognition. In this work, we presented an algo-
rithm to automatically select route dependent orientation information. We specified a set
of metrics to calculate the salience of different types of environmental features, depending
on the users’ context in terms of the location and the target scale. First, feature candidates
are selected from spatial databases. Secondly, the feature candidates are analyzed with
respect to the single salience metrics, which result in an overall salience value. This ex-
tends previous solutions in two ways: (i) our algorithm is not restricted to the selection
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around decision points, but runs for any location and context along the route; (ii) beyond
landmarks, our algorithm considers all kinds of orientation information. We presented a
prototypical implementation of the algorithm and discussed the results.

In future work, cognitive aspects of orientation information selection need to be investi-
gated. This is required for the optimization of the algorithm with respect to the underlying
data basis and the theoretical input. Moreover, an open question that needs further re-
search, is the representation and selection of environmental regions in spatial databases.
While previous work focused on static scenarios, we see the biggest challenge in the selec-
tion and visualization of cognitive adequate orientation information for dynamic wayfind-
ing scenarios. Future work needs to investigate how the salience and relevance of envi-
ronmental features for wayfinding and orientation support changes with respect to the
changing context of the navigators. Moreover, algorithms need to be extended to account
for context changes along the route.
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Feature Category
Type Name Weight Relation Uniqueness Distance Direction Salience

Intersection
PL Wayside Cross 0.80 1.00 1.00 0.80 1.00 0.92
PL Memorial 0.80 1.00 1.00 0.64 1.00 0.89
LL Werse 0.70 1.00 1.00 0.21 0.50 0.68
AL Westpark 0.50 1.00 1.00 0.97 1.00 0.89
ER Residential Area 1.00 1.00 1.00 1.00 1.00 1.00

Neighborhood
PL Hotel 0.70 1.00 1.00 0.80 1.00 0.90
PL Bar 0.50 1.00 1.00 0.72 1.00 0.84
PL Dentist 0.50 1.00 1.00 0.61 1.00 0.82
PL Bank 0.50 1.00 1.00 0.57 1.00 0.81
PL Driving School 0.50 1.00 1.00 0.50 1.00 0.80
LL Rails 0.70 1.00 0.14 0.29 1.00 0.63
LL Rails 0.70 1.00 0.14 0.28 1.00 0.63
LL Rails 0.70 1.00 0.14 0.27 1.00 0.62
LL Werse 0.70 1.00 0.20 0.61 0.50 0.60
LL Werse 0.70 1.00 0.20 0.84 0.10 0.57
AL Playground 0.50 1.00 1.00 0.96 1.00 0.89
AL Fountain 0.50 1.00 1.00 0.64 1.00 0.83
AL Pharmacy 0.50 1.00 0.50 0.98 1.00 0.80
AL Library 0.50 1.00 1.00 0.43 1.00 0.79
AL Hotel 0.70 1.00 1.00 0.71 0.50 0.78
ER Residential Area 1.00 1.00 0.50 1.00 1.00 0.90

City
PL Hotel 0.70 1.00 1.00 0.95 1.00 0.93
PL Bar 0.50 1.00 1.00 0.92 1.00 0.88
PL Casino 0.50 1.00 1.00 0.86 1.00 0.87
PL Radio Station 0.50 1.00 1.00 0.81 1.00 0.86
PL Main Train Station 0.50 1.00 1.00 0.78 1.00 0.86
LL Rails 0.70 1.00 0.03 0.80 1.00 0.71
LL Rails 0.70 1.00 0.03 0.80 1.00 0.71
LL Rails 0.70 1.00 0.03 0.80 1.00 0.71
LL Rails 0.70 1.00 0.03 0.78 1.00 0.70
LL Rails 0.70 1.00 0.03 0.78 1.00 0.70
AL City Council 0.80 1.00 1.00 0.98 1.00 0.96
AL Hotel 0.70 1.00 1.00 0.92 1.00 0.92
AL Swimming Pool 0.70 1.00 1.00 0.76 1.00 0.89
AL Library 0.50 1.00 1.00 0.84 1.00 0.87
AL Hospital 0.50 1.00 1.00 0.80 1.00 0.86
ER Railway 1.00 1.00 1.00 0.80 1.00 0.96
ER Construction Site 1.00 1.00 1.00 0.76 1.00 0.95
ER Cementery 1.00 1.00 0.50 0.64 1.00 0.83
ER Allotments 1.00 1.00 0.14 0.91 1.00 0.81
ER Allotments 1.00 1.00 0.14 0.78 1.00 0.79

Table 6: Numerical results of case 1.
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Feature Category
Type Name Weight Relation Uniqueness Distance Direction Salience

Intersection
PL Bus Stop 0.10 1.00 1.00 0.92 1.00 0.80
AL Sports Center 0.50 1.00 1.00 0.83 0.10 0.69
ER Commercial 1.00 1.00 1.00 0.63 0.50 0.83
ER Residential Area 1.00 0.50 0.33 0.91 1.00 0.75

Neighborhood
PL Sports Club 0.50 1.00 1.00 0.78 0.10 0.68
PL Internet Cafe 0.50 1.00 1.00 0.63 0.10 0.65
PL Bus Stop 0.10 1.00 0.06 0.99 1.00 0.63
PL Bus Stop 0.10 1.00 0.06 0.99 1.00 0.63
PL Bank 0.50 0.50 0.50 0.60 1.00 0.62
AL School 0.50 1.00 0.50 0.78 1.00 0.76
AL McDonalds 0.50 1.00 1.00 0.45 0.50 0.69
AL Kindergarden 0.50 1.00 0.33 0.42 1.00 0.65
AL Playground 0.50 0.50 0.33 0.90 1.00 0.65
AL Restaurant 0.50 1.00 1.00 0.20 0.50 0.64
ER Garages 1.00 1.00 0.05 0.98 1.00 0.81
ER Park 1.00 0.50 0.50 0.98 1.00 0.80
ER Trees 1.00 1.00 1.00 0.45 0.50 0.79
ER Garages 1.00 1.00 0.05 0.85 1.00 0.78
ER Allotments 1.00 0.50 0.50 0.80 1.00 0.76

City
PL Community Center 0.50 1.00 1.00 0.85 0.10 0.69
PL Mosque 0.50 1.00 1.00 0.74 0.10 0.67
PL City Hotel 0.70 1.00 1.00 0.47 0.10 0.65
LL Olfe 0.70 0.50 0.50 0.93 1.00 0.73
LL Werse 0.70 1.00 0.33 0.63 0.10 0.55
LL Werse 0.70 1.00 0.33 0.49 0.10 0.52
LL Werse 0.70 1.00 0.33 0.47 0.10 0.52
AL Retirement Home 0.50 1.00 1.00 0.74 0.10 0.67
AL Police 0.50 1.00 1.00 0.62 0.10 0.64
AL Stadium 0.50 1.00 1.00 0.59 0.10 0.64
AL Court 0.50 1.00 1.00 0.52 0.10 0.62
AL Swimming Pool 0.50 1.00 1.00 0.46 0.10 0.61
ER Industrial Area 1.00 0.50 0.50 1.00 1.00 0.80
ER Farmland 1.00 0.50 0.05 0.95 1.00 0.70
ER Residential Area 1.00 0.50 0.04 1.00 0.50 0.61
ER Residential Area 1.00 0.50 0.04 0.64 0.50 0.54
ER Residential Area 1.00 0.50 0.04 0.46 0.10 0.42

Table 7: Numerical results of case 2
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