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Abstract: Modern navigation applications make use of a turn-by-turn instructions ap-
proach and are mostly supported by digital devices with limited display size. This combi-
nation does little to improve users’ orientation or spatial knowledge acquisition. Consider-
ing this limitation, we propose a route schematization method to facilitate the readability of
route information and survey knowledge acquisition. Current schematization methods fo-
cus on the route path and ignore context information, specially polygonal landmarks such
as lakes, parks, and regions, which is crucial for promoting orientation. Our schematization
method, in addition to the route path, takes as input: adjacent streets, point-like landmarks,
and polygonal landmarks. Moreover, the schematic layout highlights spatial relations be-
tween route and context information, improves the readability of turns at decision points,
and the visibility of the surroundings. The focus of the paper is the schematization method
that combines geometric transformations and integer linear programming to produce the
maps. Two routes are used as examples to present the execution information and the out-
puts. We complement our results with a user study that indicates a preference for our
schematic layout in matching textual route instructions. The contribution of this paper is a
method that produces schematic route maps with context information to support the user
in wayfinding and orientation.
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1 Introduction

The use of traditional static road maps (paper maps) is becoming less common in wayfind-
ing and navigation tasks. Compared to modern GPS-based navigation systems, road maps
require considerably more cognitive effort in performing such tasks. However, the litera-
ture suggests that travelers who used paper maps for navigation have gained orientation
and a better comprehension of the geography [18, 25, 33, 52].

GPS-based navigation devices use large-scale visualizations of the route, where the fo-
cus lies on turn instructions. Although efficient in the wayfinding task, this approach im-
pairs survey knowledge acquisition, which is essential for the user to build up a mental
spatial representation and obtain orientation. Another visualization option is the small-
scale topographic overview of the route. However, in this case, turns at decision points
and landmarks are oftentimes not recognizable with enough detail to be interpreted by the
user.

Schematic visualizations make use of abstract and symbolic representations to improve
cognitive ergonomics of map interpretations, and they can be particularly useful for nav-
igation with small screen devices [12]. The most common schematic layout is the metro
map, which emphasizes the sequence of stations and connections between metro lines.
Route maps have a different function and therefore need different criteria for the schemati-
zation. Schematic route maps are expected to emphasize turns at decision points, crossing
streets, and their spatial relation with landmarks, be it point-like or polygonal.

Polygonal landmarks are examples of context information that facilitates wayfinding
[14, 21, 40, 42], also, they play an essential role as global landmarks for survey knowledge
acquisition and self-orientation [2, 41, 46]. Information such as the “route goes around the
city center” or “turn right after crossing the lake” represents spatial relations between
landmarks and a route. Schematic visualizations can be used for a cognitively adequate
representation of such spatial relations [20]. Removing granularity and unnecessary shape
complexity improves the focus on such information; however, this needs to be carefully
balanced in order to not disturb the user’s sense of distance and directions.

(a) Topographic map of the re-
gion of Munich.

(b) Official suburban train net-
work map of Munich.

Figure 1: Example of polygonal landmarks in schematic maps. The schematic map (b) indi-
cates that line S8 goes towards the Ammer lake, and the line S6 passes along the Starnberger
lake.
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The contribution of this work is a method to produce cognitive adequate schematiza-
tions of routes with context information such as side streets, point-like landmarks, and
mainly, polygonal landmarks. Our drawing method allows a controlled abstraction of the
shape of the polygonal landmark. Moreover, it explicitly considers the generalization of
the landmarks’ topological relations with the route. Figure 1 exemplifies how cartogra-
phers use schematic visualizations to highlight topological relations between paths and
polygonal landmarks.

Formally speaking, our schematization method takes as its input the target route R as
a geometrically embedded path and adjacent roads represented as stubs. Moreover, the
spatial context of R is given as a set of point-like and polygonal landmarks. The goal is
to compute a topologically correct schematic representation of the route R and its context,
which satisfies a number of hard constraints and optimizes an aesthetic quality measure.
We implement our approach as a combination of integer linear programming (ILP) for map
schematization and local geometric transformations. Figure 2 illustrates the different steps
of our method.

In order to evaluate our method, we asked participants to follow textual route descrip-
tions together with two map layouts, one with the original shape and another with the
schematic layout generated by our algorithm. In 82.8% of the evaluations, participants
reported that following the route descriptions was easier with the schematic maps.

The remainder of this article is structured as follows: In Section 2 we review related
work on map schematization with emphasis in routes and polygons. In Section 3 we de-
scribe the schematization method which includes pre-processing steps (Sections 3.1, 3.2,
3.1 and 3.3 ), the ILP model (Section 3.4), and the specificities of the route and polygonal
landmark schematization (Sections 3.5 and 3.7 respectively). In Section 4 we present the
results of our drawing method as well as the results of the user study on the readability
of the maps. Contribution, limitations and future work are discussed in Section 5. We
conclude our work in Section 6.

(a) (b) (c) (d)

Figure 2: Schematization process flow. (a) As input, we get the route path, adjacent streets,
point-like (black dots) and polygonal landmarks. (b) Original route path in blue (top),
rescaled route path in red (middle), and ILP schematization of route path and with ad-
jacent streets and point-like landmarks (bottom). (c) Affine transformation to transpose
the polygonal landmarks into the schematic route. (d) The polygons are schematized to
highlight spatial relations and to fix topological inconsistencies.

JOSIS, Number 21 (2020), pp. 99–136
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2 Related work

We divide the related work section into three topics. First, in Section 2.1 we review the
bibliography on conceptual models and layout criteria for route maps as an informative
tool for wayfinding and spatial learning. Second, in Section 2.2, we review publications on
automatic schematization of routes and polygons. Finally, in Section 2.3, we specifically re-
view publications that use ILP for schematic map drawing, since ILP is the core technology
used in our method.

2.1 Route schematization layout criteria for wayfinding and spatial
learning

Schematic cartography, different from conventional cartography, applies generalizations to
improve a map’s functionality that goes beyond the adaptation of the map’s features into a
specific map scale [50] i.e., independent of the scale the map is presented at, a generaliza-
tion is applied because it improves the map’s function as a task solving tool. The cognitive
adequacy and the usability related to the map’s functionality justifies the schematic layout
criteria that are later transformed into drawing rules.

According to Klippel [22], adequate characterization of routes as a visual wayfind-
ing tool must emphasize its primitive elements that are mentally conceptualized as route
knowledge. Klippel named these primitives wayfinding choremes, and divided them as
choremes for turn directions at decision points and choremes for spatial chunking. For
turn directions, Klippel proposed seven choremes (SHARP RIGHT, RIGHT, HALF RIGHT,
STRAIGHT, HALF LEFT, LEFT, and SHARP LEFT) as a natural human conceptualization
of directions and adequate for schematic layout criteria for route knowledge acquisition.
Spatial chunking is a combination of two or more elementary route instructions into a
single one. For the spatial chunking of routes, Klippel proposed three kinds: numerical
chunking that usually makes use of streets adjacent to the route, e.g., “turn left at the
third intersection”; structural chunking that uses the structure of the network, e.g., “ at
the roundabout, take the second exit”; and landmark chunking, e.g., “ turn left after the
gas station”. Chunking route instructions is a natural efficient way to mentally store and
communicate route knowledge [21], and therefore, an adequate route schematization must
facilitate the readability of features that support spatial chunking.

Richter [40, 41] extended Klippel’s model and provided a systematic way to analyze
route environments in order to produce optimized cognitively adequate instruction chunks
that consider landmarks and their spatial relation with the route. The produced chunked
route instructions are abstract; it means that the system stores them in a data structure, and
they need to be converted to human-readable text, pictorial representations, or schematic
route maps. Our schematization method, in its limitation, addresses the requirements of
Richter’s system for cognitively adequate instructions. Some features of the system, such
as environmental structures or linear landmarks, are not covered by our method.

Beyond the function of supporting route instructions, global (off the route) or polygonal
landmarks allow map users to extend the unidimensionality of route paths. They enrich
route maps and promote orientation [26,31,41]. Anacta et al. [2] revealed that people make
use of local and global landmarks (even if not visible from the route) in maps in order
to structure a mental map of the region and orient themselves. Löwen et al. [30] showed
that highlighting global landmarks (point-like or polygonal) in assisted navigation devices
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promotes survey knowledge acquisition. Wiener and Mallot [53] also showed that human
route planning takes regions and their spatial relations into account. Schmid et al. [44]
highlighted the relevance of presenting selected regions and polygonal landmarks in route
maps to support structured spatial learning and orientation.

We base our layout criteria for the polygonal landmarks schematization on public metro
map examples. We note that the general principles of schematization by removing un-
necessary information (shape, angle, and length generalizations) are applied to polygonal
landmarks. Moreover, path-polygon relations used in natural languages [24] are empha-
sized. Figure 1 exemplifies how a relation “along” is more evident in the schematic layout.
Although the Line 6 is not running precisely parallel to the Starnberger lake and in some
places the distance between them is over 1km, in the schematic layout the west side of the
lake and the train line are collinear.

Another layout criterion frequently applied in route maps is the scale variation, i.e.,
when different scales are applied to the same map. As pointed out by Delling et al. [9],
the information density in a route varies along its path, for example, inside an urban area
the number of decision points tends to be much larger than in a highway, and the proper
scale to visualize a route depends on this complexity. Schematic cartography allows the
application of different scale levels in different parts of a map within a single visualization,
what could mitigate the fragmentation of spatial information caused by constant zooming
and panning [43]. In The bounds of distortion [12], Godfrey and Mackaness discuss different
kinds of scale variation applied in cartography; they also highlight the relevance of such
distortions for the efficacy of navigational information in the context of small devices.

2.2 Route and polygon schematization methods

Although automatic generalization has been an important topic since the beginning of digi-
tal cartography, research on automatic schematization started only in the late ’90s and since
then has been a prolific topic. The most recognizable example of a schematic map layout
is the Tube Map of London’s metro system. Almost all cities that have a metro system
also provide their users with a schematic map of the network. For this reason, most of the
research on schematization algorithms focused on transit networks [3, 11, 17, 28, 37, 51, 54].
Those methods were surveyed in [35].

In the category of route schematization, Agrawala and Stolte [1] proposed a method to
schematize routes inspired by handmade route sketch maps. First, short roads are extended
to a minimal length to make them more visible. Second, the route path is simplified in a
simulated annealing process. Topological inconsistencies and incoherence in the turning
angles are penalized in the objective function. This approach is only a path schematiza-
tion, context information like crossing-roads and point-like landmarks are placed in a post-
processing step just as edge decoration. The schematization does not follow the principles
of cognitively motivated instructions [41], and neither considers polygonal landmarks.

Delling et al. [8] presented a co-orientated (octilinear) route schematization method that
preserves the orthogonal order among all vertices. Their 2-step method uses linear pro-
gramming to schematize monotone paths in polynomial time. To be applied in any case,
the route path is submitted to a heuristic process that decomposes the route into a minimal
set of monotone paths that are joined together after the schematization. The method was
further extended [9] to be executed in a single step using ILP. By simplifying the route in a
pre-processing step, their solution was mostly able to produce results in less than one sec-
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ond. The distortions in the final results tend to be very exaggerated because the total edge
length is minimized in the objective function. Delling et al. did not consider landmarks at
all.

Polygon schematization can be made using simplification methods. De Berg et al. [7],
Barkowsky et al. [4], and da Silva and WU [6] presented line simplification algorithms
(applicable to polygons) that consider surrounding geometric features to prevent topologi-
cal inconsistencies. Such simplifications are useful for schematization because they reduce
complexity keeping the original shape perception. However, they are evolutionary and the
input instance must be topologically correct. Our ILP method allows an input instance with
a wrong topology; we illustrate the fix of such topological inconsistencies in Section 3.7.

Polygon schematization methods that consider typical schematic style constraints
gained attention more recently. Buchin et al. [5] presented an area-preserving quadratic
time schematization method for polygons or subdivisions. Their method iteratively re-
duces the complexity of the shapes by aligning edges to remove bends. In order to pre-
serve area, a second alignment is selected to compensate the loss or gain of the area. Their
method allows octilinear simplification if the input is octilinear. Van Dijk et al. [49] pre-
sented a curvilinear polygon schematization method. The algorithms iteratively substitute
a pair of adjacent edges for a single circular arc with minimal Fréchet-distance. A sub-
stitution is rejected if a topological inconsistency is created or if the distance is out of a
given tolerance. Both methods, Buchin et al. [5] and van Dijk et al. [49], show good results
for single polygons or polygonal subdivisions, but they were not applied in the context of
highlighting spatial relations of regional landmarks in route maps.

2.3 Schematic map drawing with integer linear programming

A schematization method based on integer linear programming (ILP) was first proposed
by Nöllenburg and Wolff for the automatic drawing of metro maps [36]. Since then, several
publications proposed schematization methods using a similar framework. Oke and Sid-
diqui [38] simplified the original model to reduce execution time. Wu et al. [54] extended
the model to create space for pictures (annotations) that can be associated with the metro
stations. Delling et al. [9], already mentioned in Section 2.2, adapted the model for a path
schematization that preserves the orthogonal order of the nodes. Lan et al. [27] extended
the model to preserve the representation of major structures of the metro network, e.g., ring
lines.

Linear programming is an optimization technique used to find optimal values for real-
valued variables that minimize (or maximize) a linear objective function and are subjected
to restrictions that must be modeled as linear inequalities [45]. There exist polynomial-
time algorithms to solve linear programming problems. However, some of the constraints
require extra variables to represent discrete information, like restricting edge orientations
to a fixed set of angles, or to guarantee the correct topology, e.g., a test whether one point
is to the left or right of another. Discrete information requires the use of binary or integer
variables. Linear programming with integer variables (ILP) is NP-hard, but due to its high
relevance in discrete optimization, several practically efficient solvers exist.

For map schematization, the desired variable values are, for example, point coordinates;
the hard layout constraints are the restrictions; and soft layout constraints form the objec-
tive function as a weighted linear equation that is minimized in the optimization process.
For instance, Nöllenburg and Wolff’s model [37] has three soft layout constraints that are
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minimized together in a weighted objective function: bends, relative positions, and total
length:

Minimize αS1costS1 + αS2costS2 + αS3costS3 (1)

Where costSi is the cost of a soft constraint and αSi the weight of the soft constraint defined
as a parameter.

An ILP-based approach has an important advantage over other methods because the
schematization is not limited to a locally optimal solution like in hill-climbing [47] or sim-
ulated annealing methods [1, 3], but rather the whole solution space can be inspected to
find the solution that exactly minimizes the soft layout constraints. Moreover, topological
correctness can be guaranteed as a hard constraint, unlike some other optimizations that in-
clude violations in the topology as a cost in the objective function [1]. Specifically, the min-
imal edge spacing constraint (preserves planarity), and the circular order constraint (pre-
serves the embedding) guarantee a solution with the correct network topology. Notwith-
standing, the ILP solution has limitations. First, it is its NP-hardness, which means that
too large instances make it impractical, especially for a real-time application. Second, re-
stricted linearity is mandatory, i.e., the orientations of the edges are limited to a fixed set
of angles. The original approach [36] is octilinear (8 directions), but Nickel and Nöllen-
burg [34] demonstrated how to extend the model to be applicable with 2k directions for
any integer k.

The major difference in the conceptual model between our method and previous ILP
models for schematization [9, 37] is that we do not minimize the total edge lengths in the
objective function. This constraint results in a very compact layout adequate for metro
maps; however, the scale variation tends to be extreme, causing a distortion that is not
always desired for route maps in a driving situation. In our approach, we limit the scale
variation level with a parameter in a process before the ILP schematization (Section 3.3).
Another important difference is that, instead of running a single ILP model for the whole
instance, we run several ILP optimizations for subsets of the input. As a result, we do not
obtain a globally optimal solution for the whole instance, but in compensation, there are
some advantages of our approach. First, there is a considerable reduction in the total run-
time because of the NP-hardness of the problem. Second, partial results can be delivered
while other parts of the instances are processed. And third, distinct ILP models or weights
in the objective function can be applied to the different parts of the instance. For example,
we use distinct ILP models for the route and for polygonal landmarks.

3 Schematization method

The flowchart in Figure 3 illustrates the main steps involved in our algorithm. We divide
the main processing steps into five independent process boxes, and we will refer to their
numbers throughout this section. The route data is loaded from a street network database
that allows routing algorithms. The street data is derived from OpenStreetMap [39] data
of Münsterland (Germany). This street network contains only the topological informa-
tion, meaning that parallel segments of the same street are collapsed into a single one, the
roundabouts were collapsed into a single node, and street links, such as highway exits,
were removed.

The process box 1 contains pre-processing steps that prepare the data structures re-
quired for the schematization. It gets as input, in addition to the route path, surrounding
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Start

1.PRE-PROCESSING

a) planarization of polygonal landmarks(LM)

b) creation of control edges(CE)

c) graph decomposition

d) route rescaling transformation 

output:

Route path + Stubs + Local point-like LM CE

Rescaled route geometry

output:

Polygonal LM paths

2.ROUTE + POINT-LIKE LM

 SCHEMATIZATION

output:

Schematized route 

4.POLYGONAL LM PATH

SCHEMATIZATION

3.POLYGONAL LM 

PATH TRANSPOSITION

a) adjustment of CE lengths

b) linear transformation

output:

Schematized polygonal paths

Smooth geometry

End

output:

Transposed polygonal LM paths

Sections 3.1 & 3.2

Sections 3.4 & 3.5

Section 3.3

Sections 3.4 & 3.7

Section 3.6

Figure 3: Schematization method flowchart. The five process boxes are associated with the
document sections where they are described in detail.

streets, point-like landmarks, and polygonal landmarks. First, we planarize the polygons
with the route. Second, we create special edges (control edges) to connect the point-like
landmarks and the disconnected polygonal landmarks to the route; this step is explained
in detail in Sections 3.1 and 3.2. Third, we decompose the graph into paths, separating the
route, street edges adjacent to the route (stubs), and polygonal landmark paths. Finally,
we apply our route rescaling transformation that will define the scale variation on the final
map; we explain this step in Section 3.3.

The process box 2 shows the route schematization using ILP. It gets as input the route
path, the adjacent streets, and the control edges of the local point-like landmarks. The ILP
model uses the rescaled route geometry as a reference for the node positions and proportion
of the edges. The output is the schematized route, with the adjacent streets and the point-
like landmarks. We describe the ILP model constraints in Section 3.4, and how they are
applied for the route schematization in Section 3.5.

The process box 3 contains the steps required before the schematization of the polygonal
landmark paths. First, we adjust the length of the control edges to make it adequate to the
scale variation of the schematized route. As explained in Section 3.6, the new length of
the control edges depends on the length of the edges of the schematized route. Second,
we transpose the polygonal landmark paths to the schematized route; for that, we apply
a linear transformation that uses the crossing nodes or the control edges nodes as control
points.

The process box 4 shows the schematization of the polygonal landmark paths using ILP.
It gets as input the transposed paths that are here sequentially schematized. The schema-
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tized route and previously schematized paths need to be submitted to the process in or-
der to guarantee the correct topology. The polygonal landmarks ILP schematization is ex-
plained in Section 3.7. Finally, for aesthetics reasons, we submit the resulting schematized
path (and the route) to a smoothing generalization.

3.1 Control edges for point-like landmarks

A control edge is a distinct edge created in a pre-processing step (process box 1 in Figure 3)
that is used to preserve the relative position of the landmarks with the route. The point-like
landmarks are initially loaded as disconnected from the route, so we use control edges to
connect them. The way we create the control edges depends on the type of the landmark.
We classify the point-like landmarks into three types: landmarks at decision points (DPs),
landmarks along the route, and global landmarks.

(a) At DP landmark. (b) Along landmark. (c) Global landmark.

Figure 4: Examples of control edges (black edges) created for different classes of point-like
landmarks (black squares). The control edges connect to: a DP, green dot in (a); to a new
node on the route, red dot in (b); or to an existing route node, black dot in (c).

For landmarks at DPs, we create an edge connecting the landmark to the DP node (Fig-
ure 4a). For landmarks along the route, i.e., close to the route but not at a DP, we add to the
route path an extra node at the closest point to the landmark and create an edge connecting
this node to the landmark (Figure 4b). For global landmarks, we create an edge connecting
the landmark to the closest node in the route path (Figure 4c).

The control edges of the landmarks at DPs and along the route are schematized together
with the route and treated as an adjacent edge (Section 3.5). This way, their topology con-
cerning the route and the adjacent streets will be preserved. As for the global landmarks,
their control edges are not considered by the ILP model. They are used to preserve the rel-
ative position of the landmarks with respect to the route. So, after the route is schematized,
the new position of the global landmarks are calculated based on the length and the inci-
dent angle of their respective control edges. The incident angle is preserved, but the length
needs to be adjusted to be compatible with the rescaled route. This length adjustment is
the same as for polygonal landmarks’ control edges and is explained in Section 3.6.

3.2 Control edges for polygonal landmarks

Before the polygonal landmarks are schematized, we use a linear transformation to adjust
their position in relation to the schematized route (process box 3 in Figure 3 ). To support
this linear transformation with control points, we create control edges that connect the
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route with the landmarks. The creation of the control edges depends on the type of the
polygonal landmark.

Along the route landmarks

Along the route landmarks are polygonal landmarks that are not crossed but that lie within a
certain distance to the route. For this case, we set a pair of control edges. Figure 5 illustrates
the pair of control edges created for a polygonal landmark along the route. The control edge
is defined by a control node n (polygon node) and the closest point on the route, where an
extra node is created. The control nodes are selected based on two values: the distance to
the route (dr); and the distance to the orthogonal line at the beginning (dl1) or end (dl2)
of the linear referencing of the polygon against the route, one for each control edge. The
values dr and dl are weighted in a linear function, and the node with the lowest resulting
value is selected.

dl1

dl2

dr
dr

n1
n2

Figure 5: Control edges (black solid line) for
polygonal landmarks Along the Route. The
control nodes n1 and n2 are selected because
they mutually minimizes dr and dl1, and dr
and dl2, respectively.

q

dr
n

Figure 6: A single control edge for Ori-
gin/Destination polygonal landmarks. The
control node n is selected because it mutu-
ally minimizes the dr and |q − p/2|, with p
being the perimeter of the polygon.

Crossed polygonal landmarks

Crossed landmarks are polygonal landmarks whose boundaries intersect with the route an
even number of times. They do not need control edges since the crossing nodes suffice as
control nodes for a proper adjustment in the affine transformation.

Origin or destination polygonal landmarks

Origin or destination landmarks are polygonal landmarks whose boundaries intersect with
the route an odd number of times. Depending on whether the first or the last node of the
route is inside the polygon, we classify it as an origin or a destination. One of the crossings
is always one control node, therefore only a single control edge is created (Fig. 6). Again, we
select the polygon node (n) of the control edges based on two arguments: (1) the distance of
the route (dr), and (2) the value specifying how the node, together with the crossing control
node, divide the polygon into two paths of a similar length. Let p be the perimeter of the
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polygon, and q the length of the path connecting the node to the crossing control node. The
second argument of the evaluation function is calculated as |q − p/2|.

Global polygonal landmarks

Polygonal landmarks are classified as global if they are neither crossed nor along the route,
nor the origin or destination. Polygonal landmarks containing the entire route (e.g., a route
inside a city ) are treated as global, too. For global polygonal landmarks, we set a pair of
control edges the same way we set it for along landmarks. The only difference is a greater
weight given to the dl values in a evaluation function. Figure 7 demonstrates how the
control edges are selected if the same landmark is treated as along (7a), or global (7b).

dl

(a) Control edges as Along the Route.

dl

(b) Control edges as Global.

Figure 7: Difference in the creation of control edges if the same landmark is treated as Along
(a) and Global (b). The value dl for Global (b) received a 5 times higher weight in the node
evaluation equation.

3.3 Route rescaling transformation

The rescaling of the route is a pre-process (process box 1 in Figure 3) of the schematization
that creates a scale variation along the route. The Route ILP model uses the rescaled route
geometry as a reference for the position of the nodes and the proportion of the edges. The
rescaling allocates more space to parts of the route that have a higher concentration of
decision points (DPs), making the map more suitable to modern navigation devices with a
small screen [12].

Strictly, a DP is a point in space or time at which a choice must be made. In our method,
a DP has a more flexible definition. Let a DP be a node in the route where a turn is made at
a new street, a roundabout, or any salient intersection; we call a path connecting two DPs
a route section. The scale of each route section is reduced proportionally to their length
using a common parameter that defines the level of distortion. The resulting length l(sk)
of a route section sk is calculated as

l(sk) = l′(smin) + (l′(sk)− l′(smin)) ∗ (1− pφ(i)) (2)
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smin

sk

p = 0

p = 0:5

p = 1

Figure 8: The effect of rescaling of the route using different values for p. In the extreme case
(p = 1), all route sections (sub-paths between the green dots) have the length of the shortest
route section (smin).

Where l′(sk) is the original length of sk and l′(smin) is the given length of the shortest
route section. The float parameter p = [0, 1] specifies by how much the sections are reduced.
In the minimal distortion (p = 0), the sections keep their original length, and in the maximal
distortion (p = 1), the resulting length is the length of the shortest section. We raise p to
φ(i) = ( l

′(smin)
l′(sk)

)i to increase the effect of p proportionally to the length of the route sections
(l′(sk)), where i is a float variable in the range [0, 1]. The higher the value of i, the higher
the effect of p. All examples present in this paper use i = 0.2.

Figure 8 exemplifies the effect of the rescaling transformation in a route path for three
different p values: (i) the original route path (p = 0), (ii) an intermediate rescaling distortion
(p = 0.5), and (iii) the maximum rescaling distortion (p = 1). Note that, for (p = 1), all route
sections get the same length. Moreover, the rescaling transformation shrinks the route
geometry, and only the coordinates of the nodes in the shortest route section are preserved.

Figures 9 shows the effect of the rescaling process for four different routes and four
different p values (p = 0 is the original geometry). For each route, we expand the rescaled
geometries to have them in a similar extension. Note that the rescaling process allows
shorter route sections to be more visible, and at the same time, the resulting geometry
maintains similarity to the original geometry. The rescaled route geometry is used as an
input in the ILP model that tries to preserve the proportion of its route sections (process
box 2 in Figure 3).

It is important to mention that the rescaling process is not a topologically safe transfor-
mation for non-monotone paths. For example, route 4 and p = 0.9 in Figure 9 (red path)
contains a violation of the planarity. Some routes have a limit for p until planarity is vio-
lated; for route 4 in Figure 9, this limit is 0.86. Nevertheless, the rescaling process, in the
distortion limit (p = 1), did not violate planarity for more than 95% of the routes we tested.
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Figure 9: Example of rescaling transformation varying the distortion parameter p applied
to four different routes. Shorter route sections (sub-paths between the green dots) are more
visible, and the resulting geometry preserves recognizability to the input geometry (p = 0).
Route 4 and p = 0.9 (in red) is an invalid transformation because it violates planarity.

This is because single destination routes generated by shortest path algorithms have a high
level of monotonicity.

3.4 The ILP constraints

This section describes the ILP constraints used for the route and for the polygonal landmark
paths schematization (process boxes 2 and 4 in Figure 3 respectively). In Sections 3.5 and
3.7 we explain how we apply the constraints for each case.

An ILP schematization process gets as input a graph G = (V,E), where V is the set of
nodes, each of which has x and y Cartesian coordinates, represented here as x′(v) and y′(v)
for all v ∈ V ; E is the set of edges e = uv composed by a pair of distinct nodes, where u
and v ∈ V and where there is a direct link between u and v. The expected output are the
schematized coordinates x(v) and y(v) for all v ∈ V , such that the layout hard constraints
are satisfied and the layout soft constraints are optimized.

The hard constraints are octilinearity, best turn at DP, stub length, circular order, and pla-
narity. The last two guarantee the topologically correct output. The soft constraints are bend
minimization, edge orientation, node position, and route sections proportion. The constraints best
turn at DP, stub length, node position, and route sections proportion were newly implemented
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to address the particularity of route maps; the others were modeled identically as those
used in the original ILP model for metro map [37].

Hard constraint: Octilinearity

Octilinearity is a common rule for metro maps. For route maps, it makes intersection rep-
resentations compatible with the 8-directional model of Klippel’s wayfinding choreme the-
ory [22]. According to Klippel, a lower level in the granularity of intersections’ angles
better reflects a cognitive conceptualization of directions, facilitating their interpretation.
Moreover, octilinearity makes crossings of the route with polygonal landmarks more ex-
plicit. We modeled this constraint identically to the metro map model [37], nevertheless, an
overview of the implementation is necessary to understand the implementation of further
constraints.

0j0◦

1j45◦
2j90◦

7j315◦

3j135◦

4j180◦

5j225◦

6j270◦

u

v

Figure 10: Octilinear edge directions. The
variable dir(uv) defines the direction of uv.
In this example dir(uv) = 1.

x

z1

y

z2

2

2 v

Figure 11: Octilinear coordinate system. If
x(v) = 2 and y(v) = 2, then, by Equation 4,
z1(v) = 2 and z2(v) = 0.

To guarantee that all edges get an octilinear direction (0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦,
315◦), we define, for each edge e ∈ E, a supplementary integer variable dir(e) in the range
{0, .., 7} . Figure 10 shows how the eight dir values are associated with the octilinear direc-
tions. The variable dir(uv) constraints the coordinates of u and v to force their alignment
in the correct octilinear angle. For example, if dir(uv) = 0, i.e., the direction angle of uv is
0◦, the following must hold:

y(u) = y(v) and x(v) > x(u) (3)

The dir(e) constraints for other orthogonal directions (0◦, 90◦, 180◦ and 270◦) can be
straightforwardly defined in a similar way as in equations 3. However, for the diagonal
directions (45◦, 135◦, 225◦ and 315◦), it would require trigonometric functions that are not
linear and therefore cannot be used in ILP. To overcome this problem, two new redundant
axes, in addition to the x and y axis, are defined in the coordinate system to represent the
diagonals, z1 and z2 (Figure 11).

For all v ∈ V , we constrain z1(v) and z2(v) as a function of x(v) and y(v):

z1(v) =
x(v) + y(v)

2
and z2(v) =

x(v)− y(v)

2
(4)
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Now, using the z1 and z2 coordinates, we can constrain dir(uv) for the diagonal cases.
For example, if dir(uv) = 1, i.e., the direction angle of uv is 45◦, the following must hold:

z2(u) = z2(v) and z1(v) > z1(u) (5)

It is important to mention that dir(uv) also restricts dir(vu) to its inverse angle. For
example, if dir(uv) = 1, then dir(vu) = 5. Figure 10 illustrates this example.

Finally, additional binary variables are necessary to model the case conditions statement
that defines the direction of dir(e). Since dir(e) can assume eight directions, eight binary
variables would be necessary for each edge; however, to reduce the number of binary vari-
ables, we allow dir to assume only one of the three octilinear directions that approximate
most to the original orientation.

Hard constraint: Best turn representation at DPs

This constraint forces the turn’s representations into the seven wayfinding choremes. For
that, we constrain the direction of the route edges incident on DP nodes to the direction
that best represents the original turn. So for each edge e incident on DP, we set dir(e) to the
octilinear direction that best suits the original slope of uv. For example, if the slope of e is
40◦, we constrain dir(e) = 1 because this is the octilinear direction that best approximates
to 40◦. To avoid the infeasibility of the model (when a solution cannot be found), we always
make sure that there are at least two nodes between DPs.

STRAIGHT

VEER RIGHT

RIGHT

SHARP RIGHTSHARP LEFT

LEFT

VEER LEFT

(a) Turn directions based on the
angle.

STRAIGHT

VEER RIGHT

RIGHT

SHARP RIGHTSHARP LEFT

LEFT

VEER LEFT

(b) Klippel et al.’s alternative for
turn direction.

Figure 12: Klippel et al. proposed direction models alternatives for route maps [19]. Edge
direction at turns can be defined by the region where the original bend lies.

It is worth noting that there are other ways to model the constraints for best turns rep-
resentation. For instance, instead of edges’ slope, we could constrain the angle between the
edges incidents on the same DP. Inspired by the wayfinding choremes, we implemented
several turn representation based on angles. In Figure 12, we see two alternatives to model
octilinear turn directions based on the angle; notwithstanding, we observed consistently
better results using the slope of the incident edges. All results presented in this paper use
the edges’ slope to model turns at DPs.

Hard constraint: Circular order

This circular order hard constraint is applied to all degree-3 or higher nodes (more than two
neighbors). It preserves the circular order of the incident edges (embedding). Figure 13
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illustrates a degree-k node v and its neighbours: {u1, u2, u3, .., uk}. For a topologically cor-
rect output, the circular order (indicated by the dashed line with an arrow) of the incident
edges in v must be the same as the input.

v

uk

u1

u2u3 u2

Figure 13: The circular order of the incident edges in a node must be preserved

In order to guarantee the circular order of the incident edges in v, we need to constrain
dir(e) for all e incident to v as follows:

dir(vui+1) ≥ dir(vui) + 1 (6)

An exception is necessary for the last and the first edge relation (dir(vuk) and dir(vu1)).
We omit details here, because this constraint is modeled identically to the metro map model
(See [37, Section 3.2] for details).

Hard constraint: Planarity

The planarity hard constraint prevents pairs of non-incident edges from touching or cross-
ing themselves (preserve planarity). Together with the circular order constraint, planarity
guarantees a topologically correct schematization. We explain only the principle behind
the modeling of the inequalities because it is modeled identically to the metro map model.
(See [37, Section 3.3] for details).

v2

v1

u1

u2

e1

e2

Figure 14: The conjunctive expression 7 holds true for e1 and e2, so e2 is completely south
from e1.

Figure 14 shows two distinct edges, e1 and e2, and their respective nodes. To facilitate
the explanation, let the octilinear directions be cardinal directions: 0◦ is east, 45◦ is north-
east, 90◦ is north, 135◦ is northwest, and so on. To say that e2 is completely south from e1,
the following conjunction of inequalities must hold:

y(u2) < y(u1) ∧ y(u2) < y(v1) ∧ y(v2) < y(u1) ∧ y(v2) < y(v1) (7)

If we constrain e2 to be completely south from e1, we guarantee that e2 and e1 are
not crossing. Analogous conjunctive expressions can be defined for all other 7 octilinear
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cardinal directions using the x, y, z1, and z2 coordinates. Therefore, to guarantee that e1
and e2 do not cross themselves, at least one of eight conjunctive expressions must be true.

Hard constraint: Edge length

The edge length hard constraint is used to guarantee that all side streets edges have the
same length or that all local point-like landmarks are equally spaced from the route. The
constraint to fix the length of an edge e depends on the direction of e, i.e., dir(e). We present
the case for dir(e) = 0 like illustrated in Figure 15. The constraints for other directions are
modeled analogously.

l l
l

l
u vu

l

e

Figure 15: Hard constraint edge length fixes the lengths of the side streets (in gray) and local
point-like landmarks (large black dot) control edges to a given value l.

Recall Equation 3 with the constraints to guarantee dir(uv) = 0 (and the analogous
constraints for other directions). We modify this constraint by adding a parameter l that
represents the desired length of uv, and by change the inequality greater than to equal to as
follows:

y(u) = y(v) and x(v) = x(u) + l (8)

Soft constraint: Node position

We use the node position soft constraint to minimize the distance of the output coordinates to
the input coordinates of the nodes. They are applied to the route (rescaled coordinates) and
to the polygonal landmarks (transposed path). The node position soft constraint improves
coherence in the relative position among all nodes, i.e., it contributes for topographicity.
This constraint is not present in the original metro map model; therefore, we describe its
implementation in detail. The general idea is to add a cost in the objective function propor-
tional to the distance of the input and output coordinates for each node.

The cost of the nodes position to be minimized in the objective function is:∑
(dx(v) + dy(v)) ∀v ∈ V (9)

where dx(v) = |x(v) − x′(v)| and dy(v) = |y(v) − y′(v)|. Note that we use Manhattan
distance instead of Euclidean distance because square roots are not linear functions and
therefore cannot be used in an ILP model.

We can divide our cost function into two terms, one for the x-coordinates and another
for the y-coordinates and minimize them individually:∑

dx(v) +
∑

dy(v) ∀v ∈ V (10)
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An absolute value operator inside an ILP model usually requires the use of a binary
variable in order to treat the positive and the negative cases differently. However, an abso-
lute value operation can be modeled using two inequalities if it is an increasing function in-
side an objective function to be minimized. We show the inequalities for the x-coordinates.
The y-coordinates are modeled analogously:

dx(v) ≥ x′(v)− x(v) (11a)
dx(v) ≥ −(x′(v)− x(v)) (11b)

Soft constraint: Proportion

The proportion soft constraint is used to minimize the difference between edge lengths in the
input and output. It improves distance coherence between adjacent nodes. We also model
this constraint to maintain proportionality of route section lengths, i.e., to reduce length
distortions between decision points. The node position constraint already contributes to this
proportionality, but it is not always sufficient to guarantee a balanced result in terms of
route section lengths. Figure 16 contrasts a schematization without the proportion constraint
for route sections with one with the proportion constraint for route sections.

(a) Original route path. (b) Schematization without pro-
portion constraint.

(c) Schematization with propor-
tion constraint.

Figure 16: The effect of the proportion constraint for route sections.

The proportion constraint is not present in the original metro map model [37]. There-
fore we describe it in detail here. For simplicity, we explain the constraint to keep length
proportionality of all edges. Notwithstanding, the same principles can be applied to route
sections; for that, consider only the DP nodes instead of all nodes.

For each edge uv ∈ E, we define a variable ∆p(uv) that expresses the difference of the
resulting edge length and the input edge length as

∆p(uv) = |l′(uv)− l(uv)|, (12)

where l′(uv) is the original edge length of uv, and the variable l(uv) denotes the result-
ing edge length

l(uv) = (|x(v)− x(u)|+ |y(v)− y(u)|). (13)

This time we have two absolute value operations to describe a variable in our ILP
model. In this case, we need, for each of them, a pair of binary variables to model the
absolute value operation in a case system of linear equations. We show our model for the
x-coordinates. The y-coordinates are analogously modeled.

Let dx(uv) = |x(v)− x(u)| be the absolute value function, then dx(uv) can be expressed
as

dx(uv) =

{
x(v)− x(u) if x(v) ≥ x(u)

x(u)− x(v) if x(u) ≥ x(v).
(14)
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To model this case distinction system in our ILP model we define for each edge a pair
of binary variables λx1(uv) and λx2(uv) and constrain them as

λx1(uv) + λx2(uv) = 1. (15)

Now we can define the following inequalities

dx(uv) ≤ (x(v)− x(u)) +M(1− λx1) (16a)
dx(uv) ≥ (x(v)− x(u))−M(1− λx1) (16b)
dx(uv) ≥ −(x(v)− x(u))−M(1− λx2) (16c)
dx(uv) ≤ −(x(v)− x(u)) +M(1− λx2). (16d)

Note that if λx1(uv) = 1, by Equations 16a and 16b, we get dx(uv) = (x(v)− x(u)), and
Equations 16c and 16d are trivially fulfilled (obsolete) becauseM is a large enough constant.
Analogously, if λx2(uv) = 1, by Equations 16c and 16d we get dx(uv) = (x(u)− x(v)), and
Equations 16a and 16b are trivially fulfilled (obsolete).

Now, we can express

∆p(uv) = |l′(uv)− (dx(uv)− dy(uv))|. (17)

Again we have an absolute value operation inside an objective function to be mini-
mized. Similarly to Equation 11, we use two constraints to model Equation 17.

∆p(uv) ≥ l′(uv)− dx(uv) + dy(uv) (18a)
∆p(uv) ≥ −l′(uv) + dx(uv)− dy(uv). (18b)

Soft constraint: Bend minimization

The bend minimization soft constraint reduces the number of bends along the route. It di-
minishes unnecessary complexity along the route path in order to facilitate path following
by the user. For polygonal landmarks, it contributes to increasing abstraction. We model
this constraint in the same way it is modeled to reduce bends along the transit lines in the
metro map model [37]. For this reason, we only give an overview of its implementation
(See [37, Section 3.5] for details).

Let P be a path (the route path or a polygonal landmark path) and vb a degree-2 node
in P . The cost of the bend minimization in the objective function is:∑

b(vb) ∀vb ∈ P, (19)

where b(vb) represents the individual cost of the bend formed by the incident edges in
vb, and is calculated as

b(vb) =

{
|dir(u1vb)− dir(vbu2)| if |dir(u1vb)− dir(vbu2)| ≤ 4

8− |dir(u1vb)− dir(vbu2)| if |dir(u1vb)− dir(vbu2)| ≥ 5.
(20)

Let u1 and u2 be the two nodes adjacent to vb, as exemplified in Figure 17. In this
example we have dir(u1vb) = 0 and dir(vbu2) = 5, so |dir(u1vb) − dir(vbu2)| = 5; then, by
Equation 20, b(vb) = 3. Equation 20 has the property to give higher costs to acute bend
angles compared to obtuse ones: 0 for 0◦, 1 for 135◦, 2 for 90◦, and 3 for 45◦.
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vbu1

u2

Figure 17: The bend angle formed by edges u1vb and vbu2 is 45◦. By Equation 20, the cost
of this bend (b(vb)) is 3.

Soft constraint: Edge orientation

The soft constraint edge orientation is used to minimize the difference of edges’ direction
between the input and output. This constraint counterbalances potential undesired distor-
tion caused by the bend minimization constraint. For the route path, it improves the sense
of direction along the route path, and, for the polygonal landmark paths, it contributes to
a more genuine shape (less abstract). We modeled this constraint identically to the edge
direction constraint in the metro map model [37, Section 3.6].

Let ε(e) be a binary variable constrained as

8ε(e) ≤ dir(e)− dir′(e) ≤ 8ε(e) ∀e ∈ E, (21)

where dir′(e) is the octilinear direction angle of e that approximates best its original
slope. For instance, if the slope angle of e is 40◦, then dir′(e) = 1. Because |dir(e)−dir′(e)| <
8, by Equation 21, ε(e) = 0 if and only if dir(e) = dir′(e), otherwise ε(e) = 1.

The cost of the edges orientation in the objective function is:∑
ε(e) ∀e ∈ E. (22)

3.5 Route and point-like landmarks schematization

The ILP model for the route and point-like landmarks schematization gets as input the
route path, its adjacent streets, and the control edges of the local point-like landmarks. In
order to reduce the size of the instance, we simplify the route path using the Douglas-and-
Peucker simplification method [10] to remove some degree-2 nodes. We use a sufficiently
low enough tolerance in the simplification to keep the topographicity of curves along the
route. we guarantee that at least two nodes remain between intersections (degree-3 or
higher nodes). Keeping these two nodes improves the final representation of intersections
and guarantees the feasibility of ILP in respect to the best turns at DP hard constraint.

ILP model hard constraints are planarity, circular order, octilinearity, best turn at DP, and
edge length. The edge length fixes the lengths of the adjacent street edges and the local point-
like landmark control edges to a fixed value. The longer the edges, the higher the chances
of planarity violations, which potentially increases the execution time. The circular order
and planarity constraints guarantee topologically correct results. However, the planarity
constraint represents to the whole model 32 constraints and eight binary variables for each
pair of non-incident edges. Since the number of non-incident edges pairs is roughly m2/2,
where m is the total number of edges, planarity is the most costly constraint of the model.
In order to reduce the runtime of our application, we implement this constraint in a “lazy”
way as used by Delling et al [9]. First, the instance is schematized without the planarity
constraint, and, while the output contains edge crossings, we rerun the ILP only including
in the planarity constraint for pairs of edges that crossed in the previous executions.
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There are five soft constraints in the ILP model: node position (dist), edge orientation (dir),
bend minimization (bend), proportion for route edges (prop), and proportion for route sections
between DPs (propDP). The objective function is defined as follow:

Minimize
αdist
n

costdist +
αdir

m
costdir +

αbend

b
costbend +

αprop

m
costprop +

αpropDP

s
costpropDP

(23)
The α values are parameters to weight the cost of each soft constraint. The variables n,

m, b, and s are the number of nodes, edges, bends (degree-2 or higher nodes), and route
sections, respectively; they normalize the given weights. Note that we use the proportion
constraint twice. One is used to keep the length coherency of all edges, and the other
applied only for the route sections.

(a) Original layout (b) Schematized layout (c) Dots replaced by icons

Figure 18: Example of a route schematized with point-like landmarks

Figure 18 demonstrates the results of the route schematization with point-like land-
marks (black dots). Note that in the schematized layout (Figure 18b), landmarks along the
route are evenly spaced away from the route, creating enough space to replace the point
geometries with icons, as shown in Figure 18c.

3.6 Path transposition: adjustment of control edges’ lengths

The control edges are used to preserve the relative positions of the polygons to the route.
After the route is schematized, we use linear transformation to transpose the polygonal
landmark paths to the schematized route using the nodes of the control edges as control
points (process box 3 in Figure 3). However, because of the rescaling of the route, we need
to rescale the control edges too. The scale along the schematized route varies from section
to section, meaning that the scale factor cannot be the same for all control edges. For a
coherent rescaling, we adjust the length of the control edges based on the length of the
schematized route edges. Let Er be the set of route edges, and l′(er) and l(er) the lengths
of the original and schematized route edge er ∈ Er, respectively. The ratio of the new
length for each control edge is calculated as:∑ l(er)

d(er)
/
∑ l′(er)

d(er)
∀er ∈ Er and d(er) < 0.8, (24)
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where d(er) is the normalized (scaling [0, 1]) distance of the route edge er to the control
edge. Because we weight each route edge by the inverse of its distance to the control edge,
route edges closer to the control edges will have a higher influence on the resulting length
of the control edge. Moreover, we ignore route edges that are too far away from the control
edge (d(er) ≥ 0.8).

3.7 Polygonal landmark path schematization

The ILP for polygonal landmark paths schematization gets as main input the transposed
geometries of the polygons obtained from a linear transformation. The linear transfor-
mation uses crossing nodes or the control edges nodes as control points (process box 3 in
Figure 3). Figure 19b illustrates the transposed paths (black lines) as a result of this process.

(a)

(b) (c)

Figure 19: Polygon schematization workflow: (a) Before the route is schematized we create
control nodes (yellow dots) and control edges (red lines) for each polygon. (b) After the
route is rescaled and schematized, we adjust the control edges’ length in order to use the
control nodes in the affine transformation to transpose the polygons (black outlines). (c)
Finally, the transposed polygons are schematized using ILP

Before running the ILP to schematize the polygons, we reduce the number of nodes
of the polygon to reduce the ILP run time. Reducing the number of nodes is done using
Douglas-Peucker simplification with the simplification tolerance limited in order to pre-
serve the perceptual morphology of landmarks. This guarantees that the control nodes
are maintained. Other simplification methods are equally possible such as discrete curve
evolution [4] which shows good performance regarding the perceptual appearance of the
polygon. Our method is independent of the simplification method. However, a simplifica-
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tion method such as discrete curve evolution [4] could improve results, because it preserves
better the perceptual appearance of the polygon.

The ILP model hard constraints for the polygonal landmark path schematization are
octilinearity and planarity. We use the same iterative planarity check as for the route ILP.
First, the instance is schematized without the planarity constraint, and, while the output
contains edge crossings, we rerun the ILP including the planarity constraints for those pairs
of edges that crossed in previous executions.

There are five soft constraints in the polygon schematization ILP model: node position
(dist), node position for control nodes only (distCN), edge orientation (dir), bend minimization
(bend), and proportion (prop). The objective function is defined as:

Minimize
αdist

n
costdist +

αdistCN

c
costdistCN +

αdir

m
costdir +

αbend

b
costbend +

αprop

m
costprop (25)

The α values are the parameters to weight the cost of each soft constraint. The variables
n, m, b, and c are the number of nodes, edges, bends (non degree-1 nodes), and control
nodes respectively; they normalize the given weights. Note that we use a second node
position constraint only for the control nodes. This way we can discriminate the weight for
the node position between control nodes and ordinary nodes.

The polygonal landmark ILP schematization is used to meet four goals: (i) reduce the
shape complexity (abstraction); (ii) guarantee the correct topology with previously schema-
tized features; (iii) emphasize spatial relations (crossings and alongness), and (iv) control
the dimension of the landmarks.

Control of abstraction

Abstraction involves reducing the shape complexity of the map’s features. It is one of the
main characteristics of schematic visualizations. Abstraction contributes to a cleaner layout
by removing unnecessary information, driving the attention of the user to more functional
elements of maps. Nevertheless, abstraction reduces recognizability of landmarks because
it leads to severe changes in the original geometry.

We control the level of abstraction by weighting the cost of the soft constraints. The
constraint bend minimization increases abstraction, and constraints edge orientation and node
position increase topographicity. Figure 20 illustrates the abstraction’s effect on the land-
mark geometries that results from variations in the soft constraints’ weights.

The weights for the soft constraints can also be dynamically adjusted. This means that
the level of abstraction can depend on attributes of landmarks, such as type, size or distance
to the route.

Fixing topological inconsistencies

Merely transposing the polygon using an affine transformation does not guarantee topo-
logical consistency with previously schematized features. Figure 21b shows a polygon
transposed to a schematized route. Note that the botton-left part of the polygon contains
crossings with the route nonexistent in the original layout (Figure 21a). The planarity con-
straint can prevent such crossings in the resulting layout. For that, we need to input pre-
viously schematized edges from the route and other polygonal landmarks into the ILP
process (process box 4 in Figure 3).
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(a) original (b) lower abstraction - dir 56.1, bend 5.5

(c) medium abstraction - dir 45.1 - bend 30.5 (d) higher abstraction - dir 12.1 - bend 45.5

Figure 20: Balancing the level of abstraction by varying the weights of the soft constraints.
The caption values are the weights for the edge orientation and bend minimization (αdir and
αbend in Equation 25). The weights for the remaining constraints are constant (1580, 790,
and 500 for αdist, αdistCN, and αprop respectively)

(a) (b) (c) (d)

Figure 21: ILP fixes topological inconsistencies. (a) Original route crosses the polygon
shape, (b) The polygon transposed to the schematized route contains extra edge crossings.
(c) Octilinear bounding box (dotted line), and detection of edges (red) to avoid crossing.
(d) Schematized polygon with correct topology

Every shape schematized in the ILP is bounded by an octilinear box defined by the limit
of the octilinear coordinates. This way, it is necessary to check for planarity violations only
for the edges intersecting this bounding box region. Figure 21c illustrates the octilinear
bounding box (black dotted lines) that limits the position of the path nodes, and the edges
of the schematized route (in red) that intersects the bounding box region. The resulting
schematization with correct topology is shown in Figure 21d.

Emphasizing spatial relation

Landmarks along the route can be used in spatial chunks (e.g., go along the park and turn
left). We can increase alongness (ratio of the region boundary being parallel to a path) with
the route by reducing the length of its pair of control edges before transposing the polygon.
Figure 22 illustrates the effect of this tighter adjustment. Because we shortened the control
edges (little black line segments) in Figure 22c, the polygonal landmark moved closer to
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the route after the transposition of its path. As a result, its schematic layout has a higher
degree of parallelism with the route compared to Figure 22b.

(a) original shape. (b) regular. (c) tight.

Figure 22: Emphasizing alongness: the control edges (dashed black lines) for (C) are short-
ened.

Scale control

The polygonal landmark ILP schematization can be used to control the size of the land-
marks. For example, a landmark along a route section with an enlarged scale can have its
size extended beyond the desired limit. Figure 23c illustrate such a case. Note that the
parks have their size over-exaggerated compared to the original layout (Figure 23a). This
happens because the route sections along the parks have their scale relatively enlarged af-
ter the route rescaling transformation, and this has an effect on the scale in the transposed
landmark paths (black outline in Figure 23b).

(a) original. (b) transposed paths. (c) no scale control. (d) with scale control.

Figure 23: Effect of scale control.

We can control the size of landmarks using the edge proportion soft constraint. For that
we add a parameter q to the Equation 12:

∆p(uv) = |q ∗ l′(uv)− l(uv)|. (26)

The parameter q modifies the resulting length of the edges. If q is equal to 1 the edges
lengths will tend to have the same length (l′(uv)) as the respective edges of the input (trans-
posed path). We calculate q by, first, estimating the ideal length of the landmark path using
the same equation for the adjustment of the control edges (Equation 24 in Section 3.6).
Then, the value q is calculated as the ratio of the ideal length over the transposed path
length. Figure 23d shows the result of scale control of the landmarks along the route using
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the parameter q. For instance, the rightmost park, q was set to 0.73, i.e., its edges’ lengths
are preferred to be 73% of the respective input edges’ lengths.

The last change to control the scale of a landmark is to remove the node position con-
straint (setting αdist = 0 in Equation 25). We remove node position because we want to
change the extension of the input path (transposed). Therefore the minimization of the
nodes distances to the input positions is not necessary. We keep only the node position con-
straint for the control nodes (distCN in Equation 25). Then only the control nodes (land-
mark control edge nodes) will have their distance to the respective input nodes minimized.

4 Results

We present the results in detail for two routes. Results for more routes can be found in the
appendix. The first example you find in this section is a route that connects two cities and
passes by several landmarks and other cities (Figure 24). This route is longer and allows us
to illustrate the main characteristics of our method (pointed with numbered annotations).
The second example (Figure 25) is a shorter route that crosses a city center. This second
example allows us to show a typical result on a larger scale. Also different from the first, it
is an example where topological inconsistencies were found and fixed (Figure 21 presents a
similar case). Complementary to the maps, we provide tables containing details about the
instances and executions.

The first example is a 33.7km long route between two cities (Figure 24). The instance
submitted to schematization is composed of 317 nodes, of which 172 belong to the route,
adjacent streets, and the point-like landmarks, and 145 to the polygonal landmarks. We
count here only the number of nodes after the Douglas-Peucker simplification, i.e., the
actual size of the instance submitted to ILP process. The total execution time was 6.189 sec-
onds, of which 5.2 seconds for the route, and 0.983 for 8 landmarks. We ran our application
using an 8GB RAM Intel Core i7 2.8 GHz Windows 10 Laptop and IBM CPLEX R©V12.7.1 to
solve the ILP model. Also, for all ILP executions, we set the relative MIP gap tolerance to
0.1, i.e., CPLEX stops the execution as soon as it finds a feasible integer solution proved to
be within ten percent of optimal.

General
nodes edges rescaled paths poly. LM point LM fixed cross. ILP exec. runtime

317 304 0.77 12 8 13 0 13 6189ms

Route
nodes edges DPs stubs αbend αdir αdist αprop αpropDP ILP exec. runtime

172 171 12 60 100 43.5 43.5 100 200 1 5206ms

Polygonal landmark paths
paths nodes edges αbend αdir αdist* αdistCN αprop ILP exec. runtime

12 145 13 25 52.8 1000 500 500 12 983ms

Table 1: Schematization summary of Figure 24.

Table 1 shows the main information on the instance and the weights used in the objec-
tive function. The weights are shown as the α values used in the Equation 23 for the route,
and in the Equation 25 for the polygonal landmark paths. The 12 polygonal landmark paths
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Figure 24: Example of input and output of our method with annotations.

are individually schematized but, to be more concise, we summarize their schematization
information into a single table. For that we use the same weights in the objective function
for all landmarks, except for the node position constraint of the landmarks along the route.
For them, the value αdist is zero because of the scale control explained in Section 3.7.

Yet in Figure 24, we compare the original with the resulting layout in the same space
extension. In order to facilitate the description of the schematic layout criteria effects, we
added reference annotations (numbers inside circles) to the input figure. Note that, for
parts of the route with a higher density of DPs and landmarks, the scale is larger (7), and for
parts of the route with fewer elements the scale is smaller (5); that way, short route sections
and small polygonal landmarks are more visible in the schematic layout. Unnecessary
bends along the route path were removed (3), and important crossings and turns were
made more evident (1, 6), in line with the wayfinding choremes theory [22]. The placement
of point-like landmarks (black dots) is consistent with the original (8); those that were too
close were pushed away from the route, making it easier to identify on which crossing
corner or which side of the route they are located. As for the polygonal landmarks, their
shape was simplified making them more abstract (4), their crossing with the route became
more orthogonal and, for those along the route, the parallelism became more evident (2).

The second example is a 3.7km route (Figure 25). This instance is composed of 135
nodes, of which 78 belong to the route, adjacent streets, and the point-like landmarks, and
57 to the polygonal landmarks. The total execution time was 2.281 seconds, of which 0.7
seconds for the route, and 1.58 seconds for 3 polygonal landmarks. Note that in this exam-
ple 9 ILP executions were required for the 4 polygonal landmark paths (Table 2). The extra
ILP executions were necessary to fix edge crossings that violated the topology as identi-
fied after the first executions. This example also shows the characteristics described in the
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(a) input (b) output

Figure 25: Example of input and output. The route goes along a park (green) and crosses
the city center (gray). The lake (blue) is a global landmark. There are seven DPs and three
point-like landmarks.

General
nodes edges rescaled paths poly. LM point LM fixed cross. ILP exec. runtime

135 130 0.5 4 4 3 7 10 2281ms

Route
nodes edges DPs stubs αbend αdir αdist αprop αpropDP ILP exec. runtime

78 77 7 15 50 75 75 100 75 1 705ms

Polygonal landmark paths
paths nodes edges αbend αdir αdist* αdistCN αprop ILP exec. runtime

4 57 53 25 48.4 1000 500 500 9 1576ms

Table 2: Schematization summary of Figure 25. Five extras ILP executions were necessary
to fix 7 edge crossings that violated the topology.

first example in a larger scale. Note that street junctions, turn directions, and topological
relations with landmarks are more clear in the schematic route map.

4.1 User study: readability of route instructions on schematic layout

We conducted an empirical experiment to evaluate the preference of users between a non-
schematic and a schematic route map in a route instructions matching task. The experiment
consisted of personal judgments, and the goal was to understand if the proposed route
schematization facilitates the readability of route information.
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Participants. We collected data from 27 participants (17 female, 10 male; average age of
29.56 years). Most of them were recruited via social media groups and a general university
mailing list. The study was approved by the institute’s ethics committee. Participants
signed informed consent forms before participating and received a EUR 5 compensation
for their collaboration.

Materials. We prepared 19 question sheets, each for a single route. Each route was
presented in a landscape orientated A4 sheet. Each sheet was divided into three boxes.
On the left side, covering one-third of the page, there was a column containing route in-
structions. The rest of the page was vertically or horizontally (depending on the extension
of the route dimensions) divided into two equally-sized boxes. Each box contained either
the original or the schematized layout. The left-right location of the box containing the
schematic version was randomised. Figure 26 illustrates three examples of routes used in
the experiment.

The routes were calculated and schematized using the system and street data described
in our methodology (Section 3). We selected the routes varying the levels of complexity
(from 3 to 9 DPs) and varying the spatial relations with polygonal and point-like land-
marks. The landmarks are geometries representing real geographic features, we only vary
its type, e.g., we refer to a village as park or a lake in some routes. In order to evaluate
different aspects of the algorithm we divided the routes into three focus group: (i) schema-
tization of the route and side streets (no landmarks, as seen in Figure 26a), (ii) route and
placement of the point-like landmarks (no polygonal landmarks, as seen in Figure 26b), and
(iii) spatial relations of the route with the polygonal landmarks (no point-like landmarks,
as seen in Figure 26c).

Experimental Design and Procedure. Participants were invited to sit in a regular office
desk, read the experiment instructions, and read the map features legend. After that, each
participant had to evaluate 19 routes. We presented the participants with a textual route
description composed of an ordered list of instructions, and the two corresponding map
layouts: the non-schematic version (with the input coordinates), and a schematic version
generated by our algorithm. Then, we asked participants to read the instructions and fol-
low them in both maps. Afterwards, participants were asked to answer two questions:
(1) On which layout is the route instructions easier to follow? and (2) Which layout symbolizes
better the route instructions? Participants needed to provide their preference on a separate
answer-sheet in a forced-choice manner, i.e., they could select only one layout to answer
each question.

Results. 27 participants provided a total of 513 evaluations. Table 3 shows the results of
the evaluation reported by the participants divided by the aspect focus. In total, in 82.8%
of the evaluations, participants reported route instructions in the schematic layout to be
easier to follow, and in 74.5% of the evaluations, participants thought that the schematic
layout symbolizes route instructions better.

If the participants were indifferent to the map layout, we would expect a mean value
closer to 50%. We tested whether these differences were statistically significant by perform-
ing a test of equal proportions (a one-sample binomial test) against the null hypothesis that
the preference for schematized and non-schematized layout is equal. The Result was sig-
nificant for both questions, and for all aspects (Table 4). This confirms that the preference
for the schematic layout was significantly higher than for the non-schematic layout, in all
three aspect focus categories. We did not find any significant difference between genders.
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(a) route and side streets.

(b) point-like landmarks.

(c) polygonal landmarks.

Figure 26: Example of routes used in the experiment: in Figure 26a the focus is on the
route and side streets only, in Figure 26b the focus is on the point-like landmarks, and in
Figure 26c the focus is on the polygonal landmarks.

Easier to follow Symbolizes better
Aspect focus Original Schematic Total Original Schematic Total
Route only 19 143 162 32 130 162
Point-like landmarks 23 112 135 28 107 135
Polygonal landmarks 46 170 216 71 145 216
All routes 88 425 513 131 382 513

Table 3: Evaluation results. Participants layout preference (original vs. schematic) on two
questions: On which layout are the route instructions easier to follow? Which layout symbolizes
better the route instructions?

5 Discussion

Schematic cartography makes use of generalizations to improve specific functionalities of
a map. As discussed in the introduction, we are investigating visualizations whose pri-
mary functions are to facilitate the readability of route information and the acquisition of
survey knowledge. As presented in the Results section, our route schematization method
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Easier to follow Symbolizes better
Aspect focus χ2 df p χ2 df p
Route only 93.39 1 < .001 58.08 1 < .001
Point-like landmarks 57.36 1 < .001 45.07 1 < .001
Polygonal landmarks 70.04 1 < .001 24.67 1 < .001

Table 4: Tests of equal proportions demonstrating statistically significant difference in the
choices for schematized layouts, for both questions and all three aspects.

achieved the layout criteria for a functional route map, i.e., emphasized turns at decision
points, crossings, elements for spatial chunking [21], and the route’s spatial relation with
contextual information [41].

Our method cares strictly for the transformation of geometric route features to cogni-
tively adequate schematizations. The problem of selecting the streets and landmarks that
are useful for schematic route maps is out of the scope. Richter [41] defined a system that
analyses route environments and generates spatial chunks (abstracts route directions or in-
structions) with selected landmarks. Our method allows drawings of route directions and
spatial chunks with point-like and polygonal landmarks in the same level of granularity
required by Richter’s system. We expect that automatic schematization of route maps can
be applied in dynamic route information applications. For that, we suggest for future work
to test our method combined with methods of automatic selection of landmarks for route
maps.

We conducted a user study that indicates the preference of users for our schematized
layout in following route instructions. In total, 27 participants evaluated 19 different route
maps presented in two version, non-schematic and schematized by our method. In 82.8%
of the evaluations, participants reported that following route instructions in the schematic
maps was easier. This user study cannot access objective measurements of usability or
performance between different map layouts and their characteristics. A separate user study
with simulated wayfinding and navigational scenarios is required to obtain more accurate
evaluations.

In order to discuss the advantages of the schematic layout for survey knowledge ac-
quisition, we created a montage of maps within a small-display device frame (Figure 27).
We used that to compare the visibility of the surroundings. Besides the global landmarks,
we also included parts of the surrounding street network, which are not in the scope of
the method, but they help to illustrate the case. Note that at a first look, both maps, the
original layout (Figure 27a) and the schematic layout (Figure 27c), are similar. However,
in the original layout, some turns at DPs are not easily recognizable. Recognizing those
turns would require a zoom-in operation, as shown in Figure 27b, but in this case, the user
would lose the overview of the whole route and its surrounding geographical context. In
contrast, using the schematic layout, it is possible to recognize all turns and have a broader
overview of the region within a single zoom level. This characteristic is mainly due to the
scale variation that allows a larger scale for smaller elements or dense areas. The capability
of maps with scale variation to improve the practical use of maps in small screen devices is
well discussed in [12, 16, 29], it allows details of important parts to be shown together with
the surroundings.

A known disadvantage of the scale variation in cartography is the misinterpretation of
geographic nearness by the map user [13]. The perception of geographic nearness from
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graphical proximity in geovisualization is a topic that yet requires a better comprehen-
sion [15]. Nevertheless, we hope that the diagrammatic layout of the schematizations can
work as a “visual cue” of geographic inaccuracy [32], while extra annotations (e.g., labels
or marks) can be used as symbols to indicate accurate distances.

(a) original route overview. (b) original route zoom-in. (c) schematized route overview.

Figure 27: Practical applicability of our schematic layout in small screen devices. In the
topographic map (a) it is possible to have an overview of the route and of the surroundings,
but turns at DP are not recognizable; or when zoomed (b) the turns are recognizable, but
few of the surroundings are visible. In the schematic map (c) all turns are recognizable and,
in the same canvas, a lot of the surrounding is visible.

We expect that cognitively adequate route schematizations with scale variation con-
tribute to survey knowledge acquisition in visual means with limited viewport, and that
they could be a suitable informative tool for wayfinding applications that fosters orienta-
tion, as discussed by Schwering et al. [46]. We suggest as future work a behavioral study
that simulates wayfinding and navigation tasks using route maps in small devices in order
to objectively assess the level of survey knowledge acquisition with the schematic route
layout.

As for current limitations, our algorithm is not applicable to polygons structured as
subdivisions. This will be addressed in future work. Another important feature we con-
sider essential for a functional route map, and not covered in this paper, is the surrounding
street network. The street network, like global landmarks, gives an extra dimension to the
one-dimensional route path, promoting orientation and survey-knowledge aquisition. In
Figure 27 we showed a mock-up example that includes a naive network schematization
just for a matter of illustration. For future work we propose network schematization aimed
for route maps that highlights major street structures of cities or broader regions, such as
rings, radial avenues (exits) and grids. Kopf et al. [23] and van Dijk and Haunert [48]
addressed the problem of adapting a road network to maps with scale variation. The chal-
lenge for our case is to develop a method for the network schematization that gets as input,
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in addition to the network data, a route path inside the network, and the schematic route
coordinates that need to be preserved. Both methods, Kopf et al. [23] and van Dijk and
Haunert [48], are not straightforwardly applicable to this formulation of the problem of the
network schematization. Therefore, further investigations are required.

6 Conclusion

The goal of this paper was to present a method for the transformation of geometric route
features into schematizations that facilitates route and survey knowledge acquisition. Cur-
rent route schematization methods do not comply with principles of cognitive adequacy or
overlook contextual information such as side streets, point-like landmarks, and, especially,
regional landmarks. Contextual information is relevant to both route and survey informa-
tion acquisition. In this contribution, we presented a route schematization method that
includes landmarks and side streets.

Our method makes use of ILP and geometric transformations to emphasize route infor-
mation (crossings, turns at decision points) and spatial relations between local and global
landmarks. The schematization follows principles of ergonomics for route information in-
terpretation and survey knowledge acquisition. To evaluate the applied layout rules, we
conduct an empirical study that shows that users prefer to follow route instructions with
our schematized features over the original shape. We expect that automatic schematization
of route maps can support dynamic route information applications that contribute to the
spatial learning of map users.
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