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Abstract: This paper describes a framework for capturing geological structures in a 3D
block model and improving its spatial fidelity, including the correction of stratigraphic,
mineralization, and other types of boundaries, given new mesh surfaces. Using surfaces
that represent geological boundaries, the objectives are to identify areas where refinement
is needed, increase spatial resolution to minimize surface approximation error, reduce re-
dundancy to increase the compactness of the model and identify the geological domain
on a block-by-block basis. These objectives are fulfilled by four system components which
perform block-surface overlap detection, spatial structure decomposition, sub-blocks con-
solidation, and block tagging, respectively. The main contributions are a coordinate-ascent
merging algorithm and a flexible architecture for updating the spatial structure of a block
model when given multiple surfaces, which emphasizes the ability to selectively retain or
modify previously assigned block labels. The techniques employed include block-surface
intersection analysis based on the separable axis theorem and ray-tracing for establishing
the location of blocks relative to surfaces. To demonstrate the robustness and applicability
of the proposed block merging strategy in a more narrow setting, it is used to reduce block
fragmentation in an existing model where surfaces are not given and the minimum block
size is fixed. To obtain further insight, a systematic comparison with octree subblocking
subsequently illustrates the inherent constraints of dyadic hierarchical decomposition and
the importance of inter-scale merging. The results show the proposed method produces
merged blocks with less extreme aspect ratios and is highly amenable to parallel process-
ing. The overall framework is applicable to orebody modeling given geological boundaries,
and 3D segmentation more generally, where there is a need to delineate spatial regions us-
ing mesh surfaces within a block model.
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1 Introduction

This article considers the spatial interaction of triangle-mesh surfaces with a block model
as defined by Poniewierski [24]. For this study, a block model may be conceptualized as a
collection of rectangular prisms that span a modeled region in 3D space. Using a two-tier
description, the block models of interest are formed initially by a set of non-overlapping
‘parent’ blocks; these blocks have identical dimensions and are evenly spaced so they form
a regular 3D lattice. Furthermore, a subset of the parent blocks—particularly those that
intersect with a surface—are decomposed into smaller cuboids (often referred as ‘children’
or sub-blocks) with the objective of preserving surface curvature subject to a minimum
block size constraint. The sub-blocking problem represents a major theme in this paper. A
distinguishing feature is that this problem is approached from a merging (bottom-up) per-
spective which offers opportunities for sub-block consolidation to minimize over-splitting,
an issue often neglected in top-down approaches that focus exclusively on making block
splitting decisions. The proposed framework allows new block models to be generated
within a cell-based system using region partitioning surfaces. This comprises a spatial re-
structuring strategy that also allows iterative refinement of an existing block model given
newer surfaces. At its core is a block merging algorithm that increases block model com-
paction and reduces spatial fragmentation due to subblocking. As motivation, we describe
how this framework is deployed in a mine geology modeling system to illuminate key
aspects of the proposal and illustrate what purpose they serve.

In mining, 3D geological models are used in resource assessment to characterize the spa-
tial distribution of minerals in ore deposits [17]. A block model description of the geochem-
ical composition is often created by fusing various sources of information from drilling
campaigns, these include for instance: assay analysis, material, or geophysical logging, and
alignment of stratigraphic units from geologic maps during the exploration phase. Due to
the sparseness of these samples, the inherent resolution of these preliminary models are
typically low. As the exploitation phase commences, denser samples may be taken strate-
gically to develop a deeper understanding about the geology of viable ore deposits. This
knowledge can assist miners with planning and various decision making processes [13], for
instance, to prioritize areas of excavation, to develop a mining schedule [7], to optimize the
quality of an ore blend in a production plant. Of particular relevance to spatial modeling
is that wireframe surfaces can be generated by geo-modeling software [28] [20] [12], or
via kriging [9], probabilistic boundary estimation [3], boundary propagation (differential
geometry) [14], and other inference techniques [31] to minimize the uncertainty of interpo-
lation at locations where data were previously unavailable. For instance, triangle meshes
may be created by applying the marching cubes algorithm [22] to Gaussian process im-
plicit surfaces [8]. These boundary updates provide an opportunity to refine existing block
models and remove discrepancies with respect to verified boundaries. The objective is to
maximize the model’s fidelity by increasing both accuracy and precision subject to some
spatial constraints. The desired outcomes are improved localization, reduced quantization
errors and less spatial fragmentation. In other words, the boundary blocks in the block
model should accurately reflect the location of boundaries between geological domains;
smaller blocks should be used to capture the curvature of regions near boundaries to mini-
mize the surface approximation error; the model should provide a compact representation
and have a low block count to limit spatial fragmentation.
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Figure 1: Essence of block model spatial restructuring given mesh surfaces. A total of three
surfaces are involved. For clarity, only the orange blocks situated between the top and
middle surfaces are shown.

Figure 1 provides a visual summary of the primary objective. A key feature of spa-
tial restructuring is that blocks are divided as necessary to adapt the block model to the
curvature of the given surfaces. This process, known as sub-blocking, is commonly per-
formed in a top-down recursive manner which prioritizes splitting ahead of block consol-
idation. In some implementations, block consolidation is omitted altogether; this usually
results in a highly fragmented and inefficient block representation. In this paper, surface-
intersecting blocks are decomposed down to some minimum block size, then hierarchical
block merging is performed in a bottom-up manner to consolidate the sub-blocks. In the
ensuing sections, a framework for modifying the spatial structure of a block model using
triangular mesh surfaces is first presented, the techniques underpinning each subsystem
are described. Subsequently, we devote our attention to the block merging component,
the algorithm is extended to support different forms of merging constraint. The proposed
methods are applicable to orebody modeling given surfaces of mineralization or strati-
graphic boundaries—see scenarios illustrated by [33], [10], [18], [4]; and general purpose
3D block-based modeling given other types of delineation.

1.1 Definition of a surface

In this paper, the term ‘surface’ encompasses both 2.5D and 3D surfaces. The former refers
to open surfaces or warped 2D planes; these generally include mineralization, hydration,
and stratigraphic surfaces in a mining context. The latter refers to closed surfaces that en-
velop a volume in 3D space. Examples include compact 2-manifolds that are topologically
equivalent to a sphere. A simply-connected polyhedron surface would satisfy this require-
ment and have an Euler-Poincaré characteristic of 2. Closed surfaces may represent regions
with local enrichment in an ore deposit or pockets with high level of contaminants.

JOSIS, Number 21 (2020), pp. 137–174



140 LEUNG

1.2 Justification for a block-based approach

In our envisaged application, the resultant block structure facilitates volumetric estimation
of geochemical or geometallurgical properties within a mine. A block-based representation
provides spatial localization while block labelling provides differentiation between geolog-
ical domains. These properties are important for two reasons. First, it enables spatially
varying signals and non-stationary geostatistics to be learned and captured at an appropri-
ate granularity for mining. Individual blocks can be populated with local estimates of the
geochemistry, material type composition or other physical attributes. Second, it prevents
sample averaging from being applied across discontinuities (different domains) which can
lead to incorrect probabilistic inferences and skewed predictions if applied unknowingly
across a boundary with a steep attribute gradient. Although polyhedral, topological, and
surface-oriented models offer some interesting alternatives, block models have been well
established and widely deployed within the resource industry. Introducing a radically dif-
ferent approach will likely cause significant disruption and require changes, acceptance
and adaptation by various stakeholders. The proposed block model restructuring strategy
is designed to work seamlessly with existing models. It makes changes which are trans-
parent and compatible with subsequent processes such as mining exacavation which also
operates on a block scale.

2 Framework for block model spatial restructuring

This section develops a framework for altering the spatial structure of a block model to
reconcile with the shape of the supplied surfaces as depicted in Figure 1. The input block
model consists of non-overlapping blocks of varying sizes (with uniform 3D space parti-
tioning being a special case) and the surfaces, typically produced by boundary modeling
techniques, represent the interface between different geological domains. The triangular
mesh surfaces, together with the initial block model and block tagging instructions consti-
tute the entire input. The tagging instructions simply assign to each block a label which
classifies its location relative to each surface. The framework may be described in terms
of four components: block surface overlap detection, block structure decomposition, sub-
blocks consolidation, and block tagging (domain identification) as shown in Figure 2.

Block surface overlap detection 

Block structure decomposition 

Sub-blocks consolidation 

Block tagging (domain identification) 

surfaces 

output block model 

labelling 
instructions 

input block model 

Figure 2: Components in the block model spatial restructuring framework.
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2.1 Block surface overlap detection

The goal is to identify blocks in the input model which intersect with the given surface(s).
These represent areas where model refinement is needed in order to minimize the surface
approximation error. To establish a sense of scale, the input blocks (also called “parent
blocks”) typically measure 25×25×5m in an axis-aligned local frame, “axis-aligned” means
the edges of each block are parallel to one of the (x, y, or z) axes.

2.2 Block structure decomposition

Block decomposition is performed on surface-intersecting parent blocks to improve spatial
localization. This process divides each block into smaller blocks of some minimum size
(e.g., 6.25× 6.25× 1.25m). These sub-blocks are disjoint and together, they span the whole
parent block. Geometry tests are applied to determine which sub-block inside each surface-
intersecting parent block actually intersects with a given surface. This process places blocks
into one of three categories: (a) parent blocks that never intersect with any surface; or else
sub-blocks inside surface-intersecting parent blocks that (b) intersect with a surface or (c)
do not intersect with any surface.

2.3 Sub-blocks consolidation

This component coalesces sub-blocks to produce larger blocks in order to prevent over-
segmentation. Recall that one of the objective is to minimize the total number of blocks
in the output model. Therefore, if an array of 3 × 4 × 2 sub-blocks could be merged into
a perfect rectangular prism, it would be more efficient to represent them collectively by a
single block with a new centroid and their combined dimensions.

In the event that the sub-blocks (within a surface-intersecting parent block) intersect
with multiple different surfaces (say s1 and s2) then merging considerations will be applied
separately to the sub-blocks intersecting with s1 and s2. It is important to observe that block
consolidation is applied to both category “b” and category “c” sub-blocks as defined above.
Also, merging of sub-blocks across parent block boundaries is not permitted. In Section 3.3,
we describe in detail the proposed block merging approach which draws inspiration from
the coordinate-ascent algorithm.

2.4 Block tagging (domain identification)

As a general principle, block tagging assigns abstract block labels to differentiate blocks
located above and below a given surface. The objective is to support tagging with re-
spect to multiple surfaces and two labelling policies. The first policy distinguishes surface-
intersecting blocks from non-intersecting blocks. The second policy forces a binary decision
and labels surface-intersecting blocks as strictly above or below a surface. The scheme also
offers the flexibility of using a surface to limit the scope of an update, thereby leaving pre-
viously assigned labels intact above / below a surface. The processes described throughout
(Section 2.1–2.4) are deterministic and applicable in an iterative setting. This completes our
brief overview of the system.
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3 Techniques

The techniques used in each component will now be further described. For maximum
efficiency, the general set up assumes the modeled region aligns with the xyz axes. If the
modeled deposit follows the inclination of a slope, it is assumed that an appropriate 3D
rotation is applied to all spatial coordinates before subsequent techniques are applied. This
has the effect of producing axis-aligned blocks in the modeling space that ultimately align
with the principal orientation of the deposit in real space once the inverse transformation
is applied at the conclusion of the process.

3.1 Detecting block surface intersection

The method we employed for determining if an axis-aligned rectangular prism intersects
with a triangular patch from a surface is described by Akenine-Möller in [1]. This approach
applies the Separating Axis Theorem (SAT) which states that two convex polyhedra, A and
B, are disjoint if they can be separated along either an axis parallel to a normal of a face of
either A or B, or along an orthogonal axis computed from the cross product of an edge from
A with an edge from B. The technical details can be found in Appendix A.

In essence, block-surface intersection assessment consists of a series of “block versus
triangle” comparisons where the triangles considered for each block are selected based on
spatial proximity. The block-triangle overlap assessment operates on one basic principle:
a “no intersection” decision is reached as soon as one of the tests returns FALSE. A block-
triangle intersection is found only when all 13 tests return TRUE, when it failed to find any
separation. These tests are used to identify the surface triangles (if any) that intersect with
each parent block.

To maximize computation efficiency, each block is tested against a subset of triangles on
each mesh surface rather than the entire mesh surface. A kD-tree accelerator (a variation
of binary space partitioning tree) [23] is constructed using the 3D bounding boxes of each
triangle. The subset includes only triangles whose bounding box overlaps with the block;
only these candidates can intersect with the block. This pruning step limits the number
of comparisons and speeds up computation considerably. The indices harvested here can
subsequently reduce the test effort in the block structure decomposition stage.

3.2 Block structure decomposition

The key premise is to decompose surface-intersecting blocks into smaller blocks to improve
spatial localization. The basic intuition is that the surface discretization error decreases as
spatial resolution increases. Precision increases when smaller blocks are used to approxi-
mate the surface curvature where the blocks meet the surface.

Block structure decomposition entails the following. For each block (b) that intersects
with the surface, divide it volumetrically into multiple sub-blocks using the specified min-
imum block dimensions (∆block

x,min,∆
block
y,min,∆

block
z,min). The main constraints are that sub-blocks

cannot overlap and they must be completely contained by the parent block whose volume
is the union of all associated sub-blocks.1 Within each surface-intersecting parent block, we
also identify all sub-blocks that intersect with a surface and which surface they intersect

1Although we typically require parent blocks (∆block
x [b],∆block

y [b],∆block
z [b]) to be divisible by the minimum

block dimensions, the method works fine even if fractional blocks emerge during the division, i.e., the last block
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with. This is accomplished using the associative mapping [obtained during block-surface
overlap detection] which limits the relevant surface triangles to a small subset for each
surface-intersecting parent block. The relevant attributes captured in the output include
a list of surface-intersecting parent blocks, and attributes for each sub-block: viz., its cen-
troid, dimensions, parent block index, intersecting surface and position within the parent
block.

3.3 Sub-blocks consolidation via coordinate-ascent

The consolidation component focuses on merging sub-blocks inside surface-intersecting
parent blocks to reduce block fragmentation. Its basic objective is to minimize the block
count, although other mining or geologically relevant criteria such as block aspect ratio
can be optimized for. These options are considered later in Section 6.1 and Section 7.1. For
now, these high resolution sub-blocks may themselves intersect or not intersect with any
surface. This is indicated in the BlockStructureDecomposition result which serves as input.
This component returns the SubBlockConsolidation result which describes the consolidated
block structure. This encompasses all parent blocks processed, including those which do
not intersect with any surface, as well as sub-blocks or super-blocks that constitute the
surface-intersecting parent blocks.

The proposed merging algorithm is inspired by coordinate-ascent optimisation and
may be summarized as follows.

• The algorithm is inspired by “coordinate ascent” where the search proceeds along
successive coordinate directions in each iteration. The goal is to grow each block (a
rectangular prism) from a single cell and find the maximum extent of spatial expan-
sion, k = (kx, ky, kz), without infringing other blocks or cells that belong to a different
class.

• For merging purpose, each parent block is partitioned uniformly down to the min-
imum block size. The smallest unit (with minimum block size) is referred as a cell.
Block dimensions are expressed in terms of the number of cells that span in the x,
y, and z directions. Accordingly, if a block b with cell dimensions k = (kx, ky, kz) is
anchored at position c(b) ∈ R3, its bounding box would stretch from c(b) − 1

2∆block
min to

c(b) + (k− 1
2 )∆block

min for kx, ky, kz ∈ Z ≥ 1.
• Merging states are managed using a binary occupancy map (boolean 3D array) with

cell dimensions identical to the parent block. Given a block anchor position c(b) with
k initialized to (1, 1, 1), expansion steps are considered in each direction δ ∈ Z3 which
must alternate through the sequence δ0 = (1, 0, 0), δ1 = (0, 1, 0), and δ2 = (0, 0, 1).

• A step in the direction δ is feasible if all of the cells within the bounding box (c(b) −
1
2∆block

min , c(b)+(k+δ− 1
2 )∆block

min ) are 1 (active). In this case, the spatial extent is updated
via k← k + δ. Each iteration steps through δ0, δ1, δ2 in turn. This continues until no
expansion is possible in any direction, at which point the centroid and dimensions of
the merged block are computed and the corresponding cells in the occupancy map
are set to 0 (marked as inactive).

• Sub-block merging terminates for a parent block when all cells in the occupancy map
are set to 0.

toward the end is smaller than the minimum size; the ratios in each dimension nblock
x , nblock

y , nblock
z /∈ Z can be

non-integers. This essentially means there is no fundamental limit on the minimum spatial resolution.
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• The volume of a consolidated block is effectively the outer product [0, kx)⊗ [0, ky)⊗
[0, kz) where kx, ky , kz each represents some integer multiple of the minimum block
size, (∆block

x,min,∆
block
y,min,∆

block
z,min), with respect to x, y, and z.

• Different coordinate directions are used cyclically during the procedure. At all times,
it must ensure the expansion does not include alien blocks in the encompassing cube,
e.g., an L-shape block within a 2× 2× 1 cube is not allowed.
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Mesh Surfaces of Geological Boundaries”

Raymond Leung

Abstract

Not applicable

1. Introduction

Just a simple document that uses the ieeeconf
class. It produces figures to explain key steps in the
coordinate-ascent block merging algorithm.

Initial state
z0 z1 z2

� � � � � � � � � � � � � � �
� � � � · � � � � · � � � � ·· · · · · · · � � · · · � � ·

→ x

y ↓
Cycle 1:

Step 1: k = (1,1,1), δ = (1,0,0)
� � � � � � � � � � � � � � �
� � � � · � � � � · � � � � ·· · · · · · · � � · · · � � ·

Step 2: k = (2,1,1), δ = (0,1,0)
� � � � � � � � � � � � � � �
� � � � · � � � � · � � � � ·· · · · · · · � � · · · � � ·

Step 3: k = (2,2,1), δ = (0,0,1)
� � � � � � � � � � � � � � �
� � � � · � � � � · � � � � ·· · · · · · · � � · · · � � ·

Cycle 2:
Step 1: k = (2,2,2), δ = (1,0,0)

� � � � � � � � � � � � � � �
� � � � · � � � � · � � � � ·· · · · · · · � � · · · � � ·

Step 2: k = (3,2,2), δ = (0,1,0)
� � � � � � � � � � � � � � �
� � � � · � � � � · � � � � ·· · · · · · · � � · · · � � ·

Step 3: k = (3,2,3), δ = (0,0,1)
� � � � � � � � � � � � � � �
� � � � · � � � � · � � � � ·· · · · · · · � � · · · � � ·

Cycle 3:
Step 1: k = (3,2,3), δ = (1,0,0)

� � � � � � � � � � � � � � �
� � � � · � � � � · � � � � ·· · · · · · · � � · · · � � ·z0 z1 z2

Legend
� active sub-block (traversable)
· inactive sub-block (not traversable)
� coalesced super-block

Final state:
cell dimensions k = (4,2,3)

Figure 1: Sub-blocks consolidation: illustration of the
coordinate-ascent merging algorithm using occupancy
map
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Figure 2: Sub-blocks consolidation (continued) — coa-
lescing remaining active cells

Figure 3: Sub-blocks consolidation: illustration of the coordinate-ascent merging algorithm
using occupancy map.

The algorithm is explained by way of an example in Figure 3. To illustrate the algorithm,
let us refer to blocks that belong to the class under consideration as the active cells. In the
present context, this refers to either surface-intersecting sub-blocks, Sintersect, or the non-
intersecting sub-blocks, Snon-intersect, inside a parent block. The inactive cells (labelled 0)
refer to the complementary set to the active cells (labelled 1).

In Figure 3, suppose the active sub-blocks (cells) refer to Sintersect. The initial state shows
the decomposition of a parent block in terms of three x/y cross-sections. There are 5×3×3
sub-blocks (cells) within the parent block and 31 are considered “active”. The white square
cells all intersect with the same surface. It so happens the first cell encountered (with index
(iZ ·nY +iY )·nX+iX = 0) is the first active block. The algorithm considers expansion along
each axis (x, y, and z) in turn. In cycle 1, an expansion step in the x-direction is possible.
The progressive expansion of the coalesced block is represented by black square cells. In
cycle 2, further growth in the y-direction is not possible due to impediment by one or more
“inactive” blocks (denoted by ·), however, the x and z dimensions each allow one step
expansion. In cycle 3, expansion continues in the x direction, resulting in the formation of a
4×2×3 super-block. At this point, a coalesced block is extracted as no further growth in any
direction is now possible. Subsequently, the cells which have just been merged are marked

www.josis.org

http://www.josis.org


BLOCK MERGING ALGORITHMS & SPATIAL RESTRUCTURING STRATEGIES 145

out-of-bounds. The process repeats itself, starting with the next active cell it encounters in
the raster-scan order.
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• When multiple surfaces are considered, the coalesce function will next be applied
to other sub-blocks (within the same parent block) that intersect with other surfaces.
This seldom happens but it is possible if the surfaces are close.

• Finally, the coalesce function is applied to inactive sub-blocks (within the same par-
ent block) which do not intersect with any surface. The result for inactive blocks
(colored in different shades of blue) are shown in Figure 5.

To summarize, coalescing is applied only to surface-intersecting parent blocks which
are subject to decomposition. The sub-blocks contained within may intersect with one
or more surfaces, or not intersect with any surface at all. After consolidation, the output
contains both the original and merged blocks. Based on the sub-block and surface inter-
section status, the consolidated blocks may be arranged into two separate sets, Bintersect and
Bnon-intersect, as shown in Figure 5. Surface intersecting merged blocks ��� (within surface-
intersecting parent blocks) are placed in Bintersect. Non surface-intersecting merged blocks

2These represent multiplying factors relative to the minimum block size.

JOSIS, Number 21 (2020), pp. 137–174



146 LEUNG

��� (within surface-intersecting parent blocks) are placed in Bnon-intersect. Non surface-
intersecting parent blocks are also appended to this. The coordinate ascent algorithm pro-
vides a method for merging cells (sub-blocks of minimum size) within the confines of a par-
ent block. Coalesced sub-blocks must share the same label and form a rectangular prism.

3.3.1 Practicalities

Since the cell division lines are identical for all parent blocks of the same size, to avoid
having to compute the sub-block centroids and dimensions repeatedly, the cell dimensions
and local coordinates of each sub-block’s centroid (relative to the parent block’s minimum
vertex) are stored in a look-up table and indexed by parent block dimensions to speed up
computation.

3.4 Block tagging: domain identification using surfaces

The primary objective is to label whether a block is located above or below a surface. A
picture of this is shown in Figure 6. More generally, the surface is not always horizontal, so
it makes more sense referring to the space on one side of the surface as positive, the other as
negative, however this is defined.

positive side 

negative side 

block above 

block below 1
0

b

1
1

b

surface 

patch normal 

jtn
kt

n

Figure 6: Concepts relating to surfaces: surface normal (cross product) and block projected
distance (inner product) associated with a triangular patch.

The main points to appreciate in Figure 6 are that

• Each triangular patch of the surface has a normal vector associated with it. For ex-
ample, the normal ntk associated with triangle tk points in the upward direction.
This normal is computed by taking the cross product between two of its edges, for
instance, (vk,1−vk,0)×(vk,2−vk,0). This arrow would point in the opposite direction
(rotate by 180o) if the edge traversal direction is reversed; for instance, by swapping
two vertices vk,1 and vk,2 in the triangle.

• To determine “which side of the surface” a block is on, it suffices to consider the
triangular patch located closest to the block. After establishing the positive side as the
space ‘above’ the surface, one can say block b1 is located above the surface and has a
positive sign (σb1 = +1) because the inner product (ctk − cb1) · ntk is negative. Here,
ntk and ctk represent the normal and centroid of triangle tk, likewise cb1 represents
the centroid of block b1. Conversely, block b0 is below the surface and has a negative
sign (σb0 = −1) because the inner product (ctj − cb0) · ntj is positive. This ‘projection
onto normal’ approach provides the first method for block tagging.
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3.4.1 Discussion

For this method to work, the edges for each triangle in the mesh surface must be ordered
consistently (e.g., in the anti-clockwise direction) and any ambiguity in regard to surface
orientation must be resolved to ensure the assigned labels ultimately conform to user’s
expectation—e.g., the positive direction points upward with respect to an open surface
(see below) or outward in the case of a closed surface.

3.4.2 Labelling scheme: extension to multiple surfaces

This tagging logic may be extended to multiple surfaces. Figure 7 depicts a multi-surface
scenario and illustrates how abstract labels are assigned to multiple layers according to a
logic table. Proceeding from left to right, blocks from seven distinct locations relative to the
surfaces are shown. The mean surface orientation shows the direction obtained by averaging
over all triangular patch normals. This arrow can point up or down provided the ordering
of triangle vertices is consistent. Consistency can be enforced by ensuring triangle edges
are traversed only in the anti-clockwise (or clockwise) direction.

The positive direction is a user-defined concept. By default, it points in the upward di-
rection (+z axis). For a vertical surface (e.g., a geological feature such as a dyke) that runs
across multiple layers, the positive direction may be defined as left (or right). Surface po-
larity indicates if there is agreement between the mean surface orientation (a property con-
ferred by the mesh) and the positive direction (intention of the user). If they oppose, as is
the case for the bottom surface in Figure 7, the polarity is set to negative. The significance
is that the interpretation of the projected distance between a block and relevant triangle, and
subsequently what sign we assign to the block, depend on the surface polarity.
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upward direction 
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ns
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Figure 7: Block tagging in a multi-surface scenario: terminologies and label assignment
logic.

Focusing now on the shaded portion of Figure 7, comparison of block B4 with surface
1 yields (cts1,j − cB4

) · ns1,tj > 0, hence its sign σB4,s1 is negative (it is below the s1 sur-
face). However, comparison with surface 2 yields a positive sign σB4,s2 (it is above the s2
surface) even though the projected distance (cts2,k− cB4

) ·ns2,tk > 0; this is correct since s2
has negative surface polarity which negates the logic. This method is adequate for simple
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surfaces such as those depicted in Figure 7; however it can fail in more complex situations.
Therefore, the projection-onto-patch-normal approach is used here primarily as a vehicle for
illustrating concepts and vulnerabilities. The pitfalls and robust solutions will be discussed
in Section 5.

Abstract labels are assigned to merged blocks to distinguish between boundaries and
embedded layers. In this example, layers are given odd-integer labels whereas boundaries
(the interface between layers) are given even-integer labels, as indicated by the circles in
Figure 7. For the interleaved layers, given its sign σb,sn and affiliated surface sn, the abstract
label is given by λ(sn, σb,sn) = 2× (n+ 1)− σb,sn for n ≥ 0, where σb,sn ∈ {−1, 0,+1} rep-
resent {below, across, above} the surface, respectively. The affiliated surface sn is deduced
from the shaded σb,sn column of the logic table in Figure 7. For instance, at block locations
B3 and B4, the affiliated surface is s1. With σb,s0 = −1 and σb,s2 = +1 for b ∈ {B3, B4}, the
label only depends on σb,s1 when n = 1.

3.4.3 Tagging instructions

With block tagging, there is tremendous scope for creativity. The scheme described below
provides a flexible framework for domain specification given arbitrary surfaces. The dia-
gram shown in Figure 8 is similar to Figure 7 for the most part. What is different is the
emphasis on surface tagging instructions. Observe that there are three sets of tagging in-
structions: one for each surface. Each instruction specifies (1) a positive direction for each
surface; (2) nominal labels for blocks located above, across and below each surface; (3) an
override field (see “forced?”) which communicates an intent to either preserve the surface
intersecting blocks (by assigning a label different to any other layers) or resolve whether
these blocks are strictly above or below the surface, i.e., force a binary decision.
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Figure 8: Block tagging instructions: interpretation of the lambda value.

A trivalent logic is built into the nominal labels specified in item 2. In Figure 8, this is
denoted by λ. User-specified values are assigned to blocks when λ > 0. In addition, there
are two special cases worth mentioning. First, an input value of λ = 0 instructs the program
to use abstract labels instead of specific domain values (see “zero” column in Figure 8).
Second, a negative input value λ < 0 instructs the program to leave current labels intact.
This retains any prior label which has been assigned to that block (see “negative” column
in Figure 8). This ‘retain existing labels’ mode allows the spatial structure of a block model
to be updated without invalidating previous domain assignments. For instance, a surface
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s0 may be used as an upper bound. If λ(above)
s0 = −1, then all blocks located above this

surface will not have their labels modified. Similarly, s1 may be used as a lower bound. If
λ(below)
s1 = −1, then all blocks located below this surface will not have their labels modified.

3.4.4 Retaining existing domain labels

As a motivating example, suppose we rotate the picture in Figure 8 counter-clockwise by
45 degrees. Further, suppose the entire block model is currently labelled as domain A.
Then, the space between the two tilted surfaces (below s0 and above s1) can be used to
model a dolerite channel that runs diagonally across the layers. By using the following
specification: λ(above)

s0 = −1, λ(below)
s0 = B, λ(above)

s1 = B, λ(below)
s1 = −1 and forced(s) = TRUE

for both, blocks within the embedded layer will be tagged as domain B (dolerite) for some
B >0.

3.5 General interpretation

A volumetric block region (one comprising blocks of varying size) may be constructed in
multiple passes and labelled sequentially by a single or a combination of surfaces using
logical AND/OR operators based on the plane partitioning property of open surfaces, or
expressed as the intersection/union of multiple closed surfaces. As an example, a fault sur-
face may partition a space into two disjoint sets, say, blocks to the left (respectively, right)
of the divide. Input blocks in contact with the fault line may be partitioned (subblocked) to
conform to the shape of the fault surface. Subsequently, block tagging is applied indepen-
dently to these two sets. The bounding surfaces that correspond across the discontinuity
will provide similar block labelling instructions despite their physical separation. This en-
sures blocks within the same layer will receive the same label notwithstanding the vertical
offset introduced by the fault.

4 Visualization

This section illustrates some of the results produced by the proposed framework. Fig-
ure 9(a) shows a regular block structure which covers the region x ∈ [1000, 1250], y ∈
[750, 925], z ∈ [590, 670] with parent blocks measuring 25 × 25 × 5m. Three horizontal
surfaces are also given as input, these are shown in Figure 9(b). Surface-intersecting parent
blocks identified in (c) are subject to block decomposition. Using block-triangle overlap de-
tection, the surface-intersecting sub-blocks, each measuring 5×5×1m, are identified in Fig-
ure 9(d). To reduce fragmentation, the decomposed sub-blocks in the surface-intersecting
and non-intersecting sets are consolidated in Figure 9(e)–(f). For the surface-intersecting
set, the block-count decreases from 8497 to 2102 after sub-blocks are coalesced.

In regard to the forced option for block tagging, the differences between preserving the
boundary and classifying the blocks at the interface as strictly above / below a surface are
demonstrated in Figure 10(g)–(h). For clarity, Figure 10(i) shows only blocks labelled as
A and C (belonging to two domains of interest) in isolation. Clearly, they conform to the
shape of the relevant surfaces. In Figure 10(j), only blocks that intersect with the top surface
(labelled 2) have been extracted.
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(a) Regular block structure as input (b) Multiple surfaces as input (c) Surface intersecting parent blocks

(d) Surface intersecting sub-blocks (e) Consolidated sub-blocks (f) Consolidated sub-blocks from non-
from surface-intersecting set intersecting (complementary) set

Figure 9: Block restructuring given multiple surfaces.

(g) Resolving boundary blocks (h) Preserving boundary blocks
forced=1 classifies as above/below forced=0 maintains unique identity

1 (A) 

3 (B) 

5 (C) 

7 (D) 

1 (A) 

3 (B) 

2 

4 
5 (C) 

7 (D) 

6 

(i) Isolated blocks from A and C (j) Localized blocks extracted from
—two domains of interest the A/B interface

Figure 10: Block tagging given multiple surfaces.

4.1 Iterative refinement: an application to tilted surfaces

The running example has thus far taken only a regular block structure as input. In this sec-
tion, we demonstrate that the framework can also modify the spatial structure of a model
with irregular (non-uniform) block dimensions. Of particular interest is that tilted surfaces
are used to model a hypothetical dyke channel running through bedded layers. This high-
lights two significant features: (a) ability to iteratively improve the spatial structure of an
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existing block model whilst preserving the labels for horizontal strata which have been pre-
viously assigned; (b) ability to work with oblique surfaces and produce correct result when
the surface orientation is ambiguous (positive may not point upward), thus user has to
specify precisely what is meant by the positive direction in relation to the supplied tagging
instructions. An example of this is shown in Figure 11.

Figure 11: Block tagging instructions for tilted surfaces. The labels E, 8, and 10 refer to
entities shown in Figure 12.

Figure 12 shows the recut block model follows the curvature of the tilted surfaces. In (k),
blocks within the dyke are removed for clarity. Pre-existing labels (outside the dyke) remain
intact. The spatial structure is only modified around the tilted surfaces. In Figure 12(l)–
(m), blocks within the dyke and those located on the east / west interfaces are shown in
isolation. Figure 12(n)–(p) show the existing labels for blocks in A, B, C, and D have been
perfectly preserved. As expected, new labels—{8, 10}, and E respectively—have only been
assigned to blocks that intersect with and sandwiched between the tilted surfaces.

5 Engineering perspectives and applications

Critical reflection and user feedback are both essential to designing robust and flexible
systems [2]. Guided by the principle of reflective and iterative design [27], there was an
early and continued focus in our approach on real usage scenarios [25], as well as succes-
sive evaluation, modification, and scenario-based testing. In this section, we describe two
improvements made to eliminate flaws identified through this process which made the
system more robust.

5.1 Issue 1: Sign inversion due to sparse, jittery surface

In regard to block tagging and ‘which-side-of-the-surface’ determination, the ‘projection-
onto-normal’ method described in Section 2.4 works well when the surface is smooth and
triangle mesh is dense and uniform. Potential issues arise when the surface exhibits local

JOSIS, Number 21 (2020), pp. 137–174



152 LEUNG

(k) Recut block model (l) Blocks within the dyke (E) (m) Blocks intersecting with
east/west tilted surfaces

(n) Blocks within the dyke (o) Blocks in E, A, and C (p) Blocks in E, B, and D
sandwiched in the middle.

8 (abstract label) 
crust of dyke surface 

10 

C 

D 

E (dyke) 

Figure 12: Iterative refinement incorporating tilted surfaces.
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Figure 13: Local sign inversion when triangle mesh surface is sparse and jittery.

jitters and the triangles are sparse. For instance, the mesh resolution is low relative to
the parent block size when triangle patches stretch over distances of up to one kilometer
in certain areas. As an illustration, Figure 13 shows a block associated with triangle tj (the
nearest patch based on block-triangle centroid-to-centroid distance). This association yields
the wrong result, a negative sign with respect to the normal ntj is obtained (according to
the plane partitioning test) even though it lies above the surface. We observe the projection
of the block lies outside the support interval of the referenced triangle tj and the same
comparison with tk which is further away would produce the right result (a positive sign).
This problem can be remedied by upsampling the mesh surface to increase its density.
Figure 14 shows an example where triangles are recursively split along the longest edge
until the maximum patch area and length of all edges fall below the thresholds of 1250m2

and 100m. A better solution, however, is ray-tracing [21]. In general terms, ray-tracing
determines whether a block is above or below an open surface (resp., inside or outside
a closed surface) by counting the number of intersections between the surface and a ray
casted from the block. This recommended approach is described in Appendix B. The key
advantage is that ray tracing is not susceptible to variation in surface mesh density (the
sign inversion problem due to folding), furthermore, it does not require dense surfaces or
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consistent (e.g., clockwise) ordering of triangle vertices. Therefore, ray-tracing will be the
method of choice for block tagging moving forward. It replaces the projection-onto-normal
approach in our proposal.

Before: non-uniform density After: high density mesh

Figure 14: Increasing mesh density of a real surface by splitting recursively the longest
edge of triangles whose area is above the threshold.

5.2 Issue 2: Boundary localization accuracy

The block consolidation component, as it currently stands, considers the sub-blocks that be-
long to the surface-intersecting set (Bintersect) and non surface-intersecting set (Bnon-intersect)
independently. As Figure 5 has shown, the sub-blocks (cells) within each respective set
are merged separately to form larger rectangular prisms within the confines of the par-
ent blocks. While this split is useful for extracting surface-intersecting sub-blocks, it has
two drawbacks. In terms of boundary localization accuracy, Figure 15(a) shows that
surface-intersecting sub-blocks—with centroids located on different sides of the surface—
are merged together irrespective of whether it is predominantly above or below the surface.
In terms of compaction, merging potential is limited because adjacent cells from Bintersect
and Bnon-intersect cannot be coalesced even if they lie on the same side of the surface.

Surface-intersecting sub-blocks 

Non surface-intersecting sub-blocks 

Consolidated blocks 

below surface 

(a) proposed scheme in Section 3.3 (b) proposed scheme in Section 5.2 

Hypothetical surface 

Sub-block 
classification 

above surface 

? ? 

 

 

 

 

 

 

 

 
 

 
 

centroid 

Domain 
classification 

Tagging of 
merged blocks 

Tagging of 
merged blocks 

class 0 

class 1 

Figure 15: Treating surface-intersecting and non-intersecting sub-blocks, Bintersect and
Bnon-intersect, independently during block consolidation may reduce boundary localization
accuracy and limit merging potential. In the latest proposed scheme (Section 5.2), sub-
blocks are classified by their location relative to the surface before sub-blocks consolidation.

To reinforce the first point, the two cells marked with “?” in Figure 15(a) ought to be
labelled as above the surface. However, under the current regime, they are considered
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jointly with the three cells immediately to the right that also intersect with the surface, thus
they are treated collectively as a 1-by-5 merged block. Since the centroid (black dot) lies
marginally below the surface, the merged block will also be labelled as such. This distorts
the boundary as it introduces a vertical bias of around ∆(block)

y,min /2 to the two left-most cells.
To accurately localize the boundary and achieve the result shown in Figure 15(b), ray trac-
ing is used to determine the location of cells with respect to each relevant surface that in-
tersects the parent block. Given S surfaces, the {0=above (or no intersection), 1=below} de-
cisions naturally produce up to 2S categories (or states) which would be treated separately
during sub-blocks consolidation in lieu of Bintersect and Bnon-intersect. In practice, however,
we suggest encoding the location with respect to each surface s using 3 bits b3s+2b3s+1b3s,
where the mutually exclusive bits are set to 1 to denote the outcomes of above, below, and
untested, respectively. The rationale is that when b3s = 0, domain identification needs not
be attempted during block tagging with respect to surface s, since the decision has already
been made here prior to sub-blocks consolidation (either b3s+2 = 1 or b3s+1 = 1) and
this information is passed on. In fact, applying ray-casting at the cellular-level (highest
resolution) yields more accurate results near the surface than applying to merged blocks,
especially for undulating surfaces with high local curvature.

To summarize, administering ray-casting before sub-blocks consolidation helps divide
cells along surface boundaries; this increases boundary localization accuracy and ensures
merging is performed within the right domains with maximum potential. Table 1 provides
a comparison of the techniques discussed.

Techniques for ‘which side of the surface’ determination
• Projection onto normal method (Section 2.4)
+ Ability to extrapolate boundary beyond surface support interval
– Susceptible to sign inversion problem depicted in Fig. 13
• Ray tracing method (Section 5.1 and Appendix B)
+ Not impacted by sparse, jittery surface
+ Consistent edge ordering in triangular mesh surface not required
– Result only defined over support interval of the supplied surface

Techniques for sub-blocks consolidation and boundary localisation
• Earlier proposal (Section 2.3)

– Limited block merging potential due to class segregation
– Possible boundary distortion (introduce small bias)
• Latest proposal (Section 5.2)
+ Classify sub-blocks w.r.t. surface before consolidation
+ Accurate (merge & label decisions made at highest resolution)

Table 1: Comparison of techniques with emphasis on system robustness.

5.3 Applications

The first application we preview relates to block modeling for a typical mine site located
in Western Australia. The block model spatial restructuring results shown in Figure 16
illustrate a block-wise partitioning of the mine site into different domains. This is achieved
using surfaces which were created to separate geological domains (mineralized, hydrated,
and waste) within the Brockman Iron Formation which contains members of interbedded
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BIF and shale bands in the Hamersley Basin Iron Province [5]. Although ore-genesis the-
ories vary depending on the minerals or commodity, the ability to model formations and
features such as igneous intrusions in ore deposits is of general interest in areas not limited
to mining, but also in further understanding the structural geology of mineral deposits.
Using open and closed surfaces to represent structures of varying complexity—this may
encompass volumes with exceptional geochemical or geophysical attributes—it is possible
to extract waste pockets with high concentration of trace elements, or regions with mag-
netic / gravity anomaly [32]. Equally, if the surfaces represent the boundary of aquifers
separated by clay and lignite seams [34], the process may serve as a basis for creating a
structural hydrogeological model to study hydraulic and transport conditions in geotech-
nical or environmental risk assessment. The techniques developed for shaping a 3D block
model can be used potentially in a variety of contexts, including surface buffer analysis (in
GIS and structural modeling) for triangle mesh 3D boundary representation of localized
objects [16]. In the next section, we focus on a specific application of block merging to
reduce spatial fragmentation in a block model.

Figure 16: Typical block model spatial restructuring results. Top: blocks partitioned by
surfaces into different domains (not all surfaces are shown). Bottom: reveals two block sets
with different levels of mineralization in an ore deposit. In the PDF article, zoom in to see
individual blocks.
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6 Block merging to reduce spatial fragmentation

The proposed block merging algorithm can also be used to consolidate a fragmented block
model that exists with or without reference to any mesh surface. Spatial fragmentation is
used in this context to mean a highly redundant block model representation where blocks
near the boundary are over-segmented or divided in an excessive manner to follow the cur-
vature of a surface without regard for the compactness (total block count) of the model. As
an illustration, Figure 17(b) shows a highly fragmented block model for the Stanford Bunny
created by block decomposition without consolidation. In an effort to closely approximate
the surface, numerous blocks at the minimum block size were produced near the surface.
Figure 17(c) shows a clear reduction in block density as blocks are appropriately merged.
This results in a more compact block representation (3D segmentation) of the object.

(a) Stanford Bunny mesh surface 

(b) Fragmented block model (c) Consolidated block model 
187292 of 716773 blocks inside surface 435117 of 1217596 blocks inside surface 

72027 vertices, 144046 triangles 

Support interval 

X: [-1, 0.78] 

Y: [-0.02, 1.78] 

Z: [-0.58, 0.82] 

Block origin: 

  [-1, -0.02, -0.58] 

Parent block dimensions: 

  [0.02, 0.02, 0.02] 

Minimum block size: 

  [0.004, 0.004, 0.005]  

Figure 17: Block merging applied to Stanford Bunny to reduce block fragmentation. Zoom
in to see individual blocks.

The block merging algorithms are formally described in the Supplementary Material
wherein a number of technical issues are discussed in depth. At its core, a notable feature is
that ‘feasibility of cell expansion’ is determined using a multi-valued (rather than boolean)
3D occupancy map, where the values correspond to the identity of the cells or sub-blocks.
The spatial constraints governing cell expansion are somewhat different, in particular, the
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lateral dimensions orthogonal to the axis of expansion have to match for all the blocks
involved in a merge. These, along with other relevant considerations and implementation
details, are described in Appendices D.4–D.6.

6.1 Merging conventions and optimization objectives

The block merging algorithms also recognize that merging can be performed under dif-
ferent conventions. For example, in Algorithm 2, the procedure preserves the input block
boundaries, it does not introduce new partitions (sub-divisions) that are not already present
in a parent block. This merging convention is referred as persistent block memory. It has
the property that each input block is mapped uniquely to a single block in the merged
model. In contrast, Algorithm 1 implicitly erases the sub-block boundaries before block
consolidation begins. This merging convention is referred as dissolved sub-block bound-
aries, it generally achieves higher compaction because it makes no distinction between
input blocks from the same class and parent. It is able to grow blocks more freely and
produce fewer merged blocks since the size compatibility constraints between individual
blocks no longer apply when internal sub-block boundaries are ignored. These differences
are illustrated in Figure 18. The dissolved sub-block boundaries convention can be useful for

Fragmented Input Blocks Dissolved sub-block boundaries Persistent block memory 

Figure 18: Differences between two block merging conventions: persistent block memory
versus dissolved sub-block boundaries in 2D.

healing a fractured block model, for instance, over a region where a false geological bound-
ary was given in a previous surface update. Under the dissolved sub-block boundaries conven-
tion, coordinate-ascent can start from a clean slate and merge sub-blocks in a fragmented
area back to the fullest extent in cases where individual sub-block dimensions or internal
boundary alignments are otherwise incompatible. It is not bound by the consequences of
prior model restructuring decisions. The technical details are given in Appendix D.7.

For readers simply looking for a basic explanation, Figure 19 reinforces these points and
illustrates what healing really means in practice. Figure 19(a) shows an existing (poorly esti-
mated) boundary created using limited data at an earlier point in time. Figure 19(b) shows
the existing block model structure created using this surface which unbeknown to the user
is not faithful to the actual boundary shown in gray. At a later point in time (perhaps after
several months have elapsed), more assay measurements have been taken at previously
unsampled locations. These denser observations help improve the estimated boundary
contact points and a new (more accurate) surface is produced as a result; see bottom curve
in (a). A second iteration of the block model spatial restructuring process is applied using
the new surface. This workflow significantly improves the boundary localization prop-
erty of the new block model in (c), however it leaves behind remnant sub-blocks from the
previous iteration. Relaxing the internal constraints, block merging under the dissolved sub-
block boundaries convention helps promote healing in fractured areas. As evident in (d),
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fragmented blocks are coalesced into larger blocks in areas where the misplaced boundary
(blue surface) once occupied.

Existing New (more accurate)
(b) Existing block model structure

x

z

x

(c) Block structure after surface realignment

z
Existing block model structure

New model after spatial restructuring

(d) New structure after block consolidation

z

(a) Surfaces used for block update

z

Figure 19: Example of boundary healing through block consolidation—refer to description
in main text.

The final block merging strategy (see Algorithm 3 in Appendix E) can optimize results
with respect to different objectives. For instance, it can minimize the block count or avoid
extremely elongated blocks by optimising for the block aspect ratio. It also exploits symme-
try by following different scan patterns to alleviate ordering effects associated with using a
fixed starting point. These issues are further discussed in Appendices D.9 and D.10.

6.2 Pseudocode

The block merging algorithms are formally described in Appendix E which constitutes part
of the Supplementary Material.

6.3 Evaluation

Two experiments were performed targeting two different usage scenarios. The first ex-
periment described in Section 7 uses only the block merging algorithms to reduce block
fragmentation in an existing block model where mesh surfaces are not available and the
minimum block size has been fixed by the supplier of the model a priori. This restricted
setting requires only the use of the sub-blocks consolidation component depicted in the
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system diagram (see Figure 2). The main objective is to analyse its performance in terms of
block compaction and multi-threaded execution.

The second experiment described in Section 8 provides an end-to-end evaluation of
the entire system (from block model creation to block tagging) which applies sub-block
consolidation and ray-tracing in an iterative setting. This involves over 80 surfaces and
creates approximately 30 different domains. The goal is to compare the proposed strategies
with two hierarchical subblocking techniques based on octrees, to highlight the constraints
of dyadic decomposition and the importance of inter-scale block merging.

7 Experiment 1: Block merging efficacy on a mining re-
source block model

The proposed block merge strategy (Algorithm 3) was implemented in C++ (with boost
python bindings) and evaluated using a real model developed for a Pilbara iron ore mine
in Western Australia. The model contains 697,097 input blocks of varying sizes3 spanning
1342 parent blocks with dimensions (200, 200, 20). The input block model is given as is
without associated surfaces. The minimum block dimensions are also fixed by the user at
(5, 5, 1). A key requirement is that blocks smaller than (5, 5, 1), or being some fractional
multiples of it, must not be introduced in the output. This is guaranteed by the proposed
system.

The metrics of interest are the block aspect ratio, merged block count and execution
times with multi-threading. The AspectRatio(m) obtained using method m is defined by
fπ∗({∆(b,π∗)}b∈Sp,λ

) in (D.2). For comparison, a python implementation that uses a greedy
merging strategy based on block edges connectivity is chosen to establish a baseline. Its
sub-blocking approach is based on prime number factorization. Given parent blocks with
cell dimensions (kx, ky, kz) = (40, 40, 20) = 22 · 5 × (2, 2, 1), it seeks to grow cells into
subblocks with dimensions 2n for n ∈ Z or 5 and merge iteratively.4

7.1 Statistical perspective

Figure 20 illustrates the block merging performance of Algorithm 2 versus the baseline with
emphasis on block aspect ratios. In this plot, performance is measured in terms of block
aspect ratio. The volume-weighted aspect ratio is computed for each parent block and
sorted in ascending order. Large aspect ratios correspond to long narrow blocks whereas
small aspect ratios indicate more balanced, less extreme block dimensions which are more
preferred in a mining context. In this plot, the lower the curve, the more desirable it is. The
main observation is that the proposed block merge strategy is superior to the baseline. Even
when the coordinate-ascent procedure follows only the standard scan pattern, it produces
higher quality merged blocks (dotted line is below the dash line). The performance margin
increases significantly when multiple scans are deployed in Algorithm 3 to minimize the
aspect ratio explicitly (note: solid line is consistently below the dash line).

3There were 200 unique input block dimensions, these range from (5, 5, 1) to (50, 50, 2) with x and y varying
in increments of 5.

4This heuristic is clearly suboptimal since 3 does not appear in the prime factorization of the cell dimensions,
it is not possible for sub-blocks with kx, ky , kz of 3 to emerge in the first pass.
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Figure 20: Inverse cumulative distribution of volume-weighted block aspect ratio versus
parent block count.

7.2 Spatial perspective

Figure 21 provides an alternative view of the same result from a spatial perspective. A birds
eye view and two cross-sections from the proposed method are shown. Blocks are colored
to highlight differences in aspect ratio between the baseline and proposed method. The
darker the red, the more superior is the proposed method. Conversely, blue blocks show
the proposed method is inferior. The dominance of the red blocks show the proposed block
merge method is able to consistently produce blocks with less extreme aspect ratios across
the site. A magnified view for two regions of interest are shown in Figure 22.

7.3 Local perspective

To verify these results, we compare the baseline and proposed method for parent blocks
with a high contrast in log

(
AspectRatio(baseline)
AspectRatio(proposed)

)
. Figure 23 shows the sub-block structure

within a parent block of interest, it shows from left to right: the input blocks, and merge
results from the baseline and proposed methods. The key observation is the presence of
thin narrow blocks in the baseline result; these disappeared under the proposed method.
Algorithm 3 discovers block merging opportunities missed by the baseline method. It is
able to minimize the block aspect ratio by conducting multiple scans during coordinate-
ascent.

Figure 24 shows a second example. In the top panel, blocks are colored by block volume
such that bigger blocks are colored in warm colors (yellow, for instance). This shows the
proposed method is more effective at consolidating smaller blocks into larger blocks. The
bottom panel shows the merge result for the same parent block from a different vantage
point. Here, blocks are colored by domain labels. This illustrates an interesting case where
there is a limit to how much merging can be achieved because input blocks from different
classes are processed independently even when they share the same parent.
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Birds eye view 
(z  110) 

Upper-mid section 
(z  95) 

Lower-mid section  
(z  80) 
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extreme 
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y 

parent block 

proposed baseline 

Proposed  Block Merge Aspect Ratio Quality Metric 

Block merging quality comparison 
200m 

Less 
extreme 

Figure 21: Cross-sections of merged block model colored by contrast in block aspect ratio.

Figure 22: Spatial perspective of merged block model in regions of interest.

7.4 Block compaction

Table 2 reports the number of output blocks produced by the baseline and proposed meth-
ods. The block count column shows the proposed method is more efficient at coalescing
blocks than the baseline method, as the block count under “persistent block memory” is
lower. The block count reported for the proposed method under “dissolved sub-block
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Figure 23: Block merging local comparison 1—an instance where the log-contrast in block
aspect ratio, log(ARbaseline/ARproposed), is highest amongst all parent blocks.

Figure 24: Block merging local comparison 2—a second instance where the log-contrast in
block aspect ratio is amongst the highest over all parent blocks.

boundaries” is lower still, this is consistent with our expectation and the reasoning given
in Appendix D.7 based on constraint relaxation.

merge method convention block count relative %
Input – 697,097 100.0%

Baseline – 490,928 70.42%
Proposed persistent †? 487,962 70.00%
Proposed dissolved ‡? 447,412 64.18%

† = persistent block memory ‡ = dissolved sub-block boundaries
? both using multiple-scans, minimising block aspect ratio

Table 2: Block merging given irregular blocks: output block count comparison.
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7.5 Execution times and memory

Table 3 reports the processing time for block merging and demonstrates the scalable na-
ture of the proposed algorithm.5 The parallel nature of the algorithm is a consequence of
processing all input blocks that belong to the same parent block together independent of
other parent blocks. This allows processing to be compartmentalized. From the description
in Section 3.3, it is clear that block consolidation and block tagging are applied locally to
spatially disjoint regions; this is exploited in a multi-threaded implementation.

Merging under the “dissolved sub-block boundaries” convention given 697,097 blocks
(of varying sizes) from the input model, is equivalent to merging 29,154,116 blocks (with
single cell dimensions) directly under the “persistent block memory” convention. The
problem size of “dissolved”‡ grows by a factor of 41.8, however, the computation time in-
creased sub-linearly by a factor of only 9.5, this is partly due to the removal of sub-block
alignment / compatibility constraints when internal sub-block boundaries are dissolved.
Of course, the run time still increases relative to “persistent”, ultimately this may be viewed
as a trade-off between speed and compaction when Table 3 is viewed along side Table 2.
The CPU utilization and memory use columns are included for completeness, but these
figures are otherwise unremarkable. Running 16 threads, the physical memory footprint
amounts to 1% of the RAM available.

merge method convention threads time (s) relative cpu% mem (kB)
Baseline – – 254.181 1.0000 94.1 365,344

Proposed persistent †∗ 1 4.870 0.0192 – –
Proposed persistent †? 1 32.852 0.1292 100.0 285,076
Proposed persistent †? 4 9.840 0.0387 400.0 380,884
Proposed persistent †? 16 4.162 0.0164 1553.0 614,540
Proposed dissolved ‡? 1 469.462 1.8470 100.0 293,988
Proposed dissolved ‡? 4 125.111 0.4922 400.0 370,108
Proposed dissolved ‡? 16 39.675 0.1561 1547.0 609,064

† = persistent block memory ‡ = dissolved sub-block boundaries
∗ = single scan, coordinate-ascent follows the standard pattern

? multiple scans, minimising block aspect ratio

Table 3: Block merging processing times and memory footprints comparison.

8 Experiment 2: The proposed coordinate-ascent block
merging technique versus octree subblocking

Octree decomposition is a volumetric partitioning strategy that is well studied in the lit-
erature [26]. As this hierarchical structure has previously been considered as a potential
representation for spatial information systems in geology [11], it provides an interesting
reference point to measure our proposed method against. To obtain a fair comparison, the
parent blocks (∆block

parent ∈ R3) must be divisible by the minimum block size (∆block
min ) by some

vector k = (kx, ky, kz)T = (2Kx , 2Ky , 2Kz)T ∈ Z3
+ where each element is a power of two.

5Experiments were conducted on a linux machine with 32 CPUs, 8 cores (Intel Xeon R© CPU E5-2680 @
2.70GHz), 64GB RAM and 2G swap memory.
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This dyadic constraint is necessary for compatibility since the standard octree has to split
each dimension into half along the x, y, and z axes at each spatial decomposition step. The
analysis presented earlier in Table 2 pertains to a block model where its parameters (e.g.,
∆block

min ) are already fixed and the cell dimensions k = (40, 40, 20)T are not divisible by 8;
thus the maximum number of dyadic decomposition is limited to D = 2. To facilitate a
more wide-ranging comparison, we have chosen another site for which the block structure
is not fixed a priori and that geological surfaces are available. This enables all system com-
ponents in Figure 2 including block model creation (not just block merging) to be applied.
The chosen parameters ∆block

parent = (50, 50, 20)T and ∆block
min = (1.5625, 1.5625, 0.625)T satisfy

the dyadic constraints and allow a maximum of D=5 levels of octree decomposition. Fig-
ure 25 illustrates the complexity of the domain structure. This surface-induced structure
provides spatial separation between significant geological units. A detailed explanation
in terms of stratigraphy, material type or geochemical composition however is beyond the
scope of this work. The main point is that deposits in the Hamersley Group typically con-
tain interlayered Banded Iron Formations (BIF) and shale bands. Using multiple surfaces
to express boundary constraints, it is possible to isolate, for instance, areas of localized iron
enrichment within the BIFs where high grade iron ore deposits occur. Interested readers
may refer to [29] for geological context.

Figure 25: Spatial structure of a mine where block model comparison between the pro-
posed and octree representation are made. Around 30 geological domains are represented
at this site, each colored in a different shade. Black stripes represent igneous intrusions
demarcated by a set of closed surfaces (not shown). The layers are peeled back one-by-one
in an animated sequence in Appendix G. Please refer to pages 13–15 of the supplementary
material.

The schemes being compared are the two proposed coordinate-ascent block merging
algorithms performed under the persistent block memory and dissolved sub-block boundaries
conventions (denoted ‘Proposed-P’ and ‘Proposed-D’ respectively) versus octree decompo-
sition and a variant that permits intra-scale merging (denoted ‘Octree’ and ‘Octree+Merge’
respectively). In a standard octree decomposition, a heterogenous node (viz. a block with
dimensions ∆d = ∆block

parent/2
d) that contains smaller blocks with different labels is split into

an octant with 2 × 2 × 2 cells of size ∆d/2. This sub-division, similar to the approach
implemented in the Surpac software [24], is applied recursively to all heterogenous nodes
at each decomposition level d = 1, 2, . . . , D. This process shatters a volume into many
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Total block count, BD

D levels Octree Octree + Merge Proposed-P Proposed-D
3 4241289 1830826 1094917 1100585
4 17414755 7455284 4053310 4007018
5 74065301 31052736 15608162 15204844

Relative block count
D levels Octree Octree + Merge Proposed-P Proposed-D

3 100% 43.167% 25.816% 25.949%
4 100% 42.810% 23.275% 23.009%
5 100% 41.926% 21.074% 20.529%

The total block volume is approximately 3.693382× 109 m3.
A detailed breakdown of these figures is given in Appendix G.

Table 4: Block model aggregate block counts: octree versus proposed methodology.

Block count growth factor based on Table 4
Growth rate Octree Octree + Merge Proposed-P Proposed-D

B4/B3 4.1060 4.0721 3.7019 3.6408
B5/B4 4.2530 4.1652 3.8507 3.7946
B5/B3 17.4629 16.9611 14.2551 13.8152

Table 5: Block model block count growth factors: octree versus proposed methodology.

smaller blocks and thus vastly increases the block count in its pursuit of higher accuracy.
The ‘Octree+Merge’ variant allows 2 and 4 edge-connected cells to be consolidated into
a single (rectangular or square-like) block thus achieves higher compaction. This octree
merging step applies only to cells at the same scale within an octant in the spatial hierar-
chy. For completeness, a full description and pictorial examples of these concepts are given
in Appendix F.

8.1 Block count analysis

In Table 4, it can be seen that performing octree decomposition without merging produces
a large number of blocks (4241289 for D= 3 levels). With octree merging, the block count
is reduced to 43.167%. The proposed strategies have a block count of about 25% relative
to standard octree decomposition. It is worth mentioning that despite this block count
disparity, each block model represents the modeled region with the same fidelity and the
total block volume for each domain classification remains the same irrespective of D and
the block count. In one sense, the ‘Octree+Merge’ method provides an empirical bound
on block model efficiency (as measured by block count) that other strategies can surpass.
The impressive efficiency gains achieved by the proposed strategies may be attributed to
inter-scale block merging without dyadic constraints. For instance, it is possible to combine
two adjacent blocks Bi and Bj in neighboring octants if their labels are the same and their
cell-dimensions, say, k(i) = (1, 2, 1) and k(j) = (2, 2, 1) are compatible. This would not
be possible using the naïve ‘Octree+Merge’ method as it involves blocks from different
octants.

JOSIS, Number 21 (2020), pp. 137–174



166 LEUNG

weighted by block volume
D levels Octree Octree + Merge Proposed-P Proposed-D

3 2.5 2.958828 3.668188 2.615373
4 2.5 2.968178 4.901418 2.941797
5 2.5 2.972378 7.395642 3.456381

Table 6: Block model average block aspect ratios: octree versus proposed methodology.

From Table 4, it is evident the block count roughly grows by a factor of 4 with each ad-
ditional decomposition level. This is made clear in Table 5 and expressed as a ratio Bd/Bd′
between levels d and d′. Intuitively, the growth rate relates to the surface contact area with
the blocks which scales withO(n2) where n represents the number of cells measured in one
dimension. Interestingly, the proposed coordinate-ascent block merging strategies have a
lower growth rate compared to ‘Octree+Merge’—moving from 3 to 4 levels, the block count
increases by a factor of 3.6408 as opposed to 4.0721; from 3 to 5 levels, the growth rate is
13.8152 as opposed to 16.9611. In this respect, the proposed strategies scale better and they
are more efficient at representing the same domain information. We caution however that
block modeling is not ultimately about an endless pursuit for increasing precision. Block
granularity (which may be specified in terms of the number of decompositions, D) is often
limited by practical considerations. In our application, individual blocks in the model serve
as containers for grade estimation. The blockwise spatial distribution of chemical attributes
in turn informs what, where and how ore material are excavated. The heavy equipments
used to extract and transport such material operate with physical or kinematic constraints
(such as bucket size and turn radius), so the required spatial resolution in the case of min-
ing is probably limited to 1.5m to 6m at best. This naturally imposes a lower bound on the
spatial fidelity needed from a model. It informs the choice of D in our evaluation, as D=3
and D=5 yield a resolution of 1.5625m and 6.25m, respectively, in a horizontal plane.

8.2 Block aspect ratio analysis

For grade estimation at a given level of spatial fidelity, a lower block count is desirable
not so much for storage but from a computational perspective. A compact model contains
fewer blocks that require the inference engine to estimate into, and by extension, it has
fewer values to update when new information becomes available. For instance, the differ-
ence between ‘Octree+Merge’ and ‘Proposed’ can be as much as 50% (based on D = 5 in
Table 4). A secondary consideration is an optimization preference for more uniform blocks
(as opposed to thin, narrow blocks) that have lower aspect ratios. In a pure octree decom-
position scheme, the blocks always maintain the same aspect ratio (in our experiment, this
value is 50/20 or 2.5). However, this is obtained at significant cost, resulting in a substantial
increase in block count. In Table 6, the main observation is that the weighted aspect ratios
in the ‘Proposed-D’ column are a marked improvement over ‘Proposed-P’ when merging
constraints are relaxed (when input block boundaries are no longer persistent in the sense
defined in Section 6.1). It also increases slower than ‘Proposed-P’ as the resolution (number
of levels D) increases, and tends toward the values in the ‘Octree+Merge’ column.
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8.3 Block fragmentation analysis

The diversity of blocks within each model is examined in Figure 26. The graph shows the
cumulative distribution of block dimensions for D = 3 decomposition levels, with block
volumes arranged in ascending order (from left to right) and sorted by aspect ratio in the
event of a tie. The staircase nature of the orange curve for ‘Octree+Merge’ shows that
there is a much smaller pool of possible block size permutations produced via octree de-
composition with merging. To simplify the analysis, we measure blocks in multiples of
∆D=3

min = (6.25, 6.25, 2.5), for instance, using k = (2, 1, 3) to denote a block with real di-
mensions (12.5, 6.25, 7.5). Without merging, octree decomposition alone produces an over-
whelming 80.44% of blocks with cell dimensions k = (1, 1, 1), while 96.86% and 98.93% of
blocks have dimensions at/below (2, 2, 2) and (4, 4, 4), respectively.
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Figure 26: Cumulative distribution of block dimensions for D= 3: a comparison between
the proposed and octree representations.

The red curve demonstrates that the blocks in the ‘Octree’ model are indeed highly
fragmented. With intra-scale merging, the orange curve shows there is a larger spread
of blocks and the proportion occupied by the smallest blocks has substantially reduced.
Blocks with cell dimensions (1, 1, 1), (1, 1, 2), (1, 2, 1), and (2, 1, 1) now occupy the 24.09th,
31.26st, 39.98th, and 52.08nd pecentiles, respectively. Because this strategy does not permit
inter-scale merging (outside of an octant), it cannot produce blocks with cell dimensions
(1, 1, 3), (1, 3, 1), or (3, 1, 1) and indeed (1, 1, 4). These lost opportunities are capitalised by
the proposed strategies. However, the ‘Octree+Merge’ strategy can still produce blocks of
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size (1, 2, 2), (2, 1, 2), and (2, 2, 1); the so called 4-connected cells occupy the 58.45th, 68.14th,
and 78.64th percentiles, respectively.

Moving up the spatial hierarchy, the (2, 2, 2), (2, 2, 4), (2, 4, 2), and (4, 2, 2) blocks cor-
respond to the 84.01th, 85.50th, 87.36th, and 90.13th percentiles; as opposed to 96.86% at
the (2, 2, 2) stage for octree decomposition without merging. With intra-scale merging,
the (2, 4, 4), (4, 2, 4), and (4, 4, 2) blocks occupy the 91.07st, 92.99nd, and 95.25th percentiles.
Again, blocks with intermediate cell dimensions, such as (2, 3, 4) and (3, 2, 5), can only be
synthesized by the proposed techniques through inter-scale merging and relaxation of the
dyadic constraints. Similar observations hold for more levels.

8.4 Discussion and insights

The octree comparisons with the proposed methods highlight the constraints imposed by
hierarchical decomposition and the importance of block merging. In cases where the block
structure is subsequently consumed by a block estimation process, minimising the block
count (while maintaining the same level of spatial fidelity and domain classification gran-
ularity) can substantially reduce the computational effort associated with probabilistic in-
ference of block attributes. The analysis has shown, for instance, when a minimum block
size of (1.5625, 1.5625, 0.625) and 5 decomposition levels are applied to the test site, the
block count of the proposed model and ‘Octree+Merge’ model are 20.52% and 41.92%
respectively relative to standard octree decomposition without block merging. The ‘Oc-
tree+Merge’ approach is probably more indicative of the flexible subblocking approach
used in the Datamine software [24] which adjusts the split depending on the angle of in-
tersection of a particular block with the surface controlling the sub-division. It is how-
ever unclear if a split extends all the way down within a parent block, whether different
permutations and aspect ratio optimization are considered in Datamine. Returning to the
block count comparison, the factor of 2 reduction may be attributed to inter-scale merging
and relaxation of dyadic constraints as illustrated in Section 8.3. The proposed coordinate-
ascent block merging approach also scales better. For instance, the block count growth rate
from 3 to 5 levels is kept at 13.8152 as opposed to 16.9611 (see Table 4). From the cumula-
tive distribution in Figure 26, we observed the block models obtained using the proposed
methods are spatially less fragmented.

Although the performance metrics all point in favor of the proposed methods, the real
strength of the proposal is its flexibility. First, the block merging algorithm was used on
its own to consolidate and heal a spatially fragmented block model given only the par-
ent block size and minimum block dimensions (see Section 7). Second, the same algo-
rithm was used as part of a coherent block model spatial restructuring strategy to coalesce
sub-blocks partitioned by intersecting surfaces (see Section 8). Finally, it provides a suc-
cessive refinement framework for updating the spatial structure of a block model; this
takes a dynamic (non-static) view and emphasizes the evolving nature of the model. In
contrast, some commercial softwares [24] produce block models that cannot be altered or
easily manipulated. The iterative setting implies the input blocks can have different di-
mensions. The standard octree paradigm is not equipped to deal with input blocks with
varying sizes. As a case in point, given an input block with cell dimensions (4, 2, 8), a
three level dyadic decomposition would need to be applied asymmetrically to each axis,
via d1(z), d2(x, z), d3(x, y, z), to not violate the minimum block size (lower bound and inte-
ger multiple) conditions. Furthermore, an input block with cell dimensions (3, 5, 2) would
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leave the octree approach with no viable sub-blocking options unless the block is divided
non-uniformly which would set it on a similar path as the proposed strategy notwithstand-
ing the hierarchical embedding (rigid subblock alignment) constraints.

A crucial part of ‘iterative refinement’ is that large portions of an existing model should
remain intact, useful information in unaffected parts of the model are not invalidated
through the update process, and changes affect only localized regions that interact with
new surfaces. This allows creation of a new block model from scratch given a set of surfaces
(representing geological boundaries or other types of delineation), as well as automatic cor-
rection for misplaced boundaries within an existing model. In [15], the current proposal is
portrayed as a system within a system, where new information captured by sampled assay
data are used to manipulate the shape of relevant surfaces to maximize agreement with
the latest observations. These are used in turn to update the block model to improve the
accuracy of its domain structure by maximising the resolution and positional integrity of
the blocks near those surfaces. This has been shown in [15] to have a positive effect on
processes downstream. In particular, grade estimation performance improves as boundary
(smearing) artefacts are reduced during inferencing.

8.5 Summary of contributions

The overall contributions of this paper may be summarized as follows.

1. Developing a flexible framework capable of altering the spatial structure of a block
model given boundary constraints in the form of triangle mesh surfaces and a set of
tagging instructions.

2. Describing computational techniques for all system components

• From block-surface intersection detection (identifying areas requiring an up-
date), block structure decomposition (improving boundary localization), block
consolidation (increasing compactness of representation) to block tagging (en-
coding the location of blocks relative to the given surfaces).

3. Devising a new algorithm (coordinate-ascent inspired block merging) that is
amenable to multi-threading.

4. Demonstrating real applications: The algorithm was used firstly to reduce block
fragmentation in an existing mine resource estimation block model where parameters
are fixed and no surfaces are given; secondly as an integrated component within the
block model creation/augmentation workflow to coalesce subblocks partitioned by
intersecting surfaces.

5. Providing insights through quantitative analysis, highlighting the constraints of
dyadic hierarchical decomposition and importance of inter-scale merging for achiev-
ing a compact block model; discussing why this matters for subsequent block-based
estimation processes (see Section 8.1–8.4).

The first point includes correcting the position of previously misplaced boundaries in
an existing model (see Figure 19). Philosophically, it challenges the perception that voxel-
based models are hard to modify once they have been constructed. It demonstrates that
local refinement (including consolidation of fragmented blocks from previous updates) is
both possible and can be done efficiently in an iterative setting; with changes to the model
confined to areas that interact with new surfaces. The second point is about greater trans-
parency. In 3D geological modeling papers, models are often generated using commercial
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software where the fundamental techniques employed are unclear. This paper sheds light
on this and discusses pit falls and robust solutions from an engineering perspective. The
third point emphasizes flexibility. Depending on user requirement on whether internal
subblock boundaries are to be respected, it can operate in two modes (see Figure 18): with
persistent block memory to ensure an input block always maps uniquely to a merged out-
put block, or with dissolved subblock boundaries to achieve higher block compaction (a lower
block count). The specific objective in the fourth point was to capture geological struc-
tures of an ore body in a block model at a specified resolution with a minimal block count.
However, the method can potentially be applied elsewhere.

9 Conclusions

This paper described a framework for updating the spatial structure of a 3D geology block
model given mesh surfaces. The system consists of four components which perform block-
surface overlap detection, spatial structure decomposition, sub-blocks consolidation and
block tagging, respectively. These processes are responsible for identifying areas where
refinement is needed, increasing spatial resolution to minimize surface approximation er-
ror, reducing redundancy to increase the compactness of the model and establishing the
domain of each block with respect to geological boundaries. A flexible architecture was
presented which allows a model to be updated simultaneously, or iteratively, by multi-
ple surfaces, to selectively retain or modify existing block domain labels. Robustness and
accuracy of the system were considered during the design; one notable feature was us-
ing ray-tracing to establish the location of sub-blocks relative to surfaces, particularly those
near boundaries, prior to block consolidation to minimize boundary distortion. Other tech-
niques employed include block-surface intersection analysis based on the separable axis
theorem.

The main contribution was a coordinate-ascent merging algorithm which is used dur-
ing block consolidation in the proposed framework. This technique was extended to solve
a related problem, viz., using block merging to reduce fragmentation in an existing block
model where surfaces are not involved. Issues relating to scan pattern, merging conven-
tions were discussed, differences between ‘persistent block memory’ and ‘dissolved sub-block
boundaries’ were explained in terms of internal dimensions compatibility and sub-block
alignment constraints imposed on the expansion feasibility test. Performance was eval-
uated with respect to block aspect ratio, output block count and processing time using a
multi-threaded implementation. The results demonstrated the quality and scalability of the
proposed technique. Systematic evaluation against octree subblocking further highlights
the limitations of hierarchical decomposition and the importance of inter-scale merging
and relaxation of dyadic constraints. Algorithm 3 produced merged blocks with less ex-
treme aspect ratios and the approach is well suited to parallel processing. The techniques
described may apply to areas outside of geoscience (see Figure 17) where 3D body localiza-
tion, also known as 3D region segmentation, is required inside a block model given some
mesh surfaces.

10 Appendices

The appendices are contained in the supplementary material:

www.josis.org

http://www.josis.org


BLOCK MERGING ALGORITHMS & SPATIAL RESTRUCTURING STRATEGIES 171

• (A) Method for block triangle overlap detection [1];
• (B) Side-of-surface determination via ray tracing [6] [21];
• (C) Demonstration on the Stanford Bunny; data courtesy of [19], [30];
• (D) Pseudocode;

– Algorithm 1: Coordinate-ascent merging algorithm (as used for spatial restruc-
turing in Section 2.3)

– Subroutine 1: Compute sub-block properties
– Algorithm 2: Coordinate-ascent merging algorithm (for model de-fragmentation

in Appendix D)
– Subroutine 2: Feasibility tests and state updates during block expansion
– Algorithm 3: Block merging with multiple scans and optimized block aspect

ratios

• (E) Octree decomposition and merging;
• (F) Detailed octree subblocking comparison.
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