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1. Context

This document elaborates on the computational aspects of
“Modelling Orebody Structures: Block Merging Algorithms
and Block Model Spatial Restructuring Strategies Given Mesh
Surfaces of Geological Boundaries” (Leung, 2020) which de-
scribes how spatial structures can be captured in a block model
given triangle mesh surfaces that describe geological bound-
aries. Central to that work is a flexible framework for updating
the spatial structure of a block model given new surfaces and
the ability to retain or overwrite existing domain classifications
(block labels) in an iterative manner as newer information be-
comes available. Appendix A describes a method for finding
blocks in the model that intersect with triangular patches on a
given surface. This is used in (Leung, 2020) to identify areas
where model refinement is needed to accurately reflect the loca-
tion of boundaries and more closely approximate the curvature
of said surfaces. Appendix B describes the concept of ray-
tracing which is used to establish the location of blocks relative
to the surface(s) in the block tagging system component in (Le-
ung, 2020). Appendix D deals with the technical aspects of
block merging and discusses various considerations fundamen-
tal to its design. This in-depth discussion explains the differ-
ences between two block merging conventions, the constraints,
the block merging optimisation objective, and how different s-
canning sequences are implemented in practice. It should be
noted that the overall block merging technique can be applied
to areas outside of geoscience as shown in Appendix C, to re-
duce redundancy / fragmentation in a parent-grid aligned block
model, and in instances where 3D segmentation is desired given
some triangle mesh surface for an object. Appendix E provides
the pseudocode for the coordinate-ascent inspired block merg-
ing algorithms which is the main contribution of (Leung, 2020).
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Finally, detailed commentary and results on octree subblocking
are given in Appendix F and Appendix G.

Appendix A. Akenine-Möller method for block triangle
overlap detection

Assessment for “block-triangle” intersection involves at most
13 tests:

• 3 along the x, y, z axes, the orthonormal bases are denoted
e0 = (0, 0, 1), e1 = (0, 1, 0), e2 = (0, 0, 1)

• 9 for cross-products between edges of A and B, viz.,
cross(ei, f j) for i, j ∈ {0, 1, 2}

• 1 for the normal of the triangle based on cross(fi, f j) given
vertices v0, v1, v2, edge vectors fi = vmod(i+1,3) − vi

Suppose a triangle has vertices v0, v1, v2 ∈ R3, a block has cen-
troid bk = (bx, by, bz) and dimensions ∆k = (∆x,∆y,∆z), the SAT
test for axes x, y, z asserts “no overlap” if v′min[c] > ∆k[c]/2 or
v′max[c] < −∆k[c]/2 for any c ∈ {x, y, z} where v′min and v′max
represent the minimum and maximum coordinates of the trans-
lated vertices, v′i = vi−bk, after the block centroid is subtracted
from the triangle vertices.

The SAT test for cross(ei, f j) exploits the properties of axis-
aligned blocks. Its efficiency derives from terms cancellation
in the cross-product expansion when the geometry of interest is
limited to axis-aligned prisms and triangles. This uses only sim-
ple algebra; the relevant formulas may be found in (Akenine-
Möller, 2001).

The last SAT test for plane-block overlap requires pmin =

dot(n̂, δmin) + d and pmax = dot(n̂, δmax) + d to be computed,
where n̂ = n/‖n‖ is the unit length plane normal, n = (a, b, c),
d is the plane distance from origin, assuming the plane passing
through the triangle is described by the equation ax+by+cz+d =

0. The quantities δmin[c] = (1 − 2 × I(n[c] > 0)) · ∆k[c]/2 and
δmax[c] = (2 × I(n[c] > 0) − 1) · ∆k[c]/2 evaluate to ±∆k[c]/2.
The test asserts “no overlap” if pmin > 0 or pmax < 0.
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Appendix B. Side-of-surface determination via ray tracing

Ray tracing is a well known technique in the computer graph-
ics community (Dietrich et al., 2007). In the affiliated paper
(Leung, 2020), it is used to establish where a block is located
with respect to one or more triangle mesh surfaces, rather than
for rendering purpose. A ray emanating from a block (specif-
ically, its centroid) is casted in some specified direction.1 The
idea is to count the number of intersections between this ray and
the relevant surface. An even number of intersections (includ-
ing 0) result when the block is located above (respectively, out-
side) an open (respectively, closed) surface, and an odd number
of interesections is interpreted as below (respectively, inside)
the surface. The tests are based on the Möller–Trumbore algo-
rithm (Möller and Trumbore, 2005) which is explained below.

Appendix B.1. Intersection between a ray and a plane

A ray extending from p0 to p1 intersects with a plane π(vA,n)
that passes through vA ∈ R3, with normal n = vA × vB, at
pintersect = p0 + λ(p1 − p0) when λ ∈ [0, 1] where

λ =
n̂ · (vA − p0)
n̂ · (p1 − p0)

(B.1)

A picture of this is shown in Fig. B.1
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Figure B.1: Ray-triangle intersection analysis

• When λ < 0, the ray does not intersect with the triangle
described by vertices vA, vB, vC and plane π(vA,n).

• When the denominator in (B.1) is zero, the ray is parallel
to the triangle’s plane. If the numerator is also zero, the
ray intersects with the face of the triangle along a line.
Otherwise, there is no intersection.

Appendix B.2. Intersection between a ray and a triangle

When λ ∈ [0, 1], the ray intersects with the triangle at
pintersect = vA + su + tv if the barycentric coordinates s and

1For an open surface, this direction might be the upward (positive) direction
specified in the tagging instructions. For a closed surface, the direction matters
little, it is generally taken as the outward normal for the surface.

t (see Fig. B.1) satisfy s ≥ 0, t ≥ 0 and s + t ≤ 1 where

u = vB − vA, v = vC − vA (B.2)

s =
(u · v)(w · v) − (v · v)(w · u)

∆
(B.3)

t =
(u · v)(w · u) − (u · u)(w · v)

∆
(B.4)

∆ = (u · v)2 − (u · u)(v · v) (B.5)
w = pintersect − vA (B.6)

This involves only five distinct inner products, and the quan-
tities (u · u, v · v and u · v) may be precomputed as they are
independent of pintersect ∈ R3, unlike w which is a function of
the block centroid and ray direction.

Appendix B.3. Practicalities
Degenerate conditions must be handled to obtain proper re-

sults. First, when a ray intersects a surface at a common edge or
vertex shared by multiple triangles, one needs to be careful that
over-counting does not occur. In our implementation, a unique
set of intersecting points is maintained for each ray to ensure the
same intersecting point is not repeated. Second, when the de-
nominator and numerator in (B.1) are both zero, λ is undefined,
as the ray lies on the face of a triangle. This can be overcome
by changing the direction slightly for the casted ray. Finally,
triangles that collapse to a line segment or a single point need
to be removed from the test surface since ∆ → ∞ when either
edge vector u = 0 or v = 0 in (B.2) and ∆→ 0 when u and v are
parallel. Users may wish to perform surface integrity checks as
a preprocessing step to eliminate these conditions.

Appendix C. Demonstration on the Stanford Bunny

The block merging technique described in Algorithm 2 is ap-
plicable to more complex surfaces outside the geoscience do-
main. Fig. C.2 (a) shows a triangular mesh surface (McGuire,
2017) of the terracotta bunny obtained using multiple range s-
canners at the Stanford Computer Graphics Laboratory (Turk
and Levoy, 2014). Fig. C.2 (b) shows a highly fragmented block
model created by block decomposition without consolidation.
In an effort to closely approximate the surface, numerous block-
s at the minimum block size were produced near the surface.
Fig. C.2 (c) shows a reduction in block density and increase
in clarity as blocks are merged under the “dissolve sub-block
boundaries” convention (see Appendix D.7). This resulted in
a more efficient block representation (3D segmentation) of the
object.

Appendix D. Extended discussion about using block merg-
ing to reduce fragmentation

The adjustments foreshadowed in Section 5 of the paper (Le-
ung, 2020) improve both the robustness and accuracy of the
block model spatial restructuring system which utilises at least
one surface. This section considers how the block consolidation
component can be extended to serve the needs of a block merg-
ing application where the key objective is to coalesce blocks
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(a) Stanford Bunny mesh surface 

(b) Fragmented block model (c) Consolidated block model 
187292 of 716773 blocks inside surface 435117 of 1217596 blocks inside surface 

72027 vertices, 144046 triangles 

Support interval 

X: [-1, 0.78] 

Y: [-0.02, 1.78] 

Z: [-0.58, 0.82] 

Block origin: 

  [-1, -0.02, -0.58] 

Parent block dimensions: 

  [0.02, 0.02, 0.02] 

Minimum block size: 

  [0.004, 0.004, 0.005]  

Figure C.2: Block merging applied to Stanford Bunny to reduce block frag-
mentation. Zoom in to see individual blocks.

in a fragmented block model without any input surface. This
extension builds upon the ideas described in Section 2.3. The
characteristics and constraints of the problem will be described
next. Henceforth, the established framework for block mod-
el spatial restructuring using surfaces from Section 5 and new
block merge application will be abbreviated as SRUS and BM,
respectively.

Appendix D.1. Problem description

In block model spatial restructuring using surfaces (SRUS),
merging follows block-surface intersection detection and block
decomposition, so we know precisely which input block (par-
ent) a sub-block (cell) comes from. These input blocks may
have different dimensions, particularly if the pipeline is repeat-
ed when individual surfaces are processed in cascade (see ex-
ample in Section 4.1 where the output from the first iteration
becomes the input in the second iteration). For the application
envisaged in surface-free block merge (BM), the input contains
only the labels, locations and dimensions of sub-blocks which
are integer multiples of the minimum block size. Whilst the par-
ent block and origin continues to provide a uniform grid struc-
ture that covers the 3D space, these parent-blocks have constant
dimensions and only exist on a conceptual level for the purpose
of grouping together the sub-blocks. Furthermore, ray-casting
needs not be performed to determine which side of a surface a
block is located, since the input provides domain labels for each

block. The goal of BM is to consolidate the input blocks into
larger rectangular prisms to minimise fragmentation.

Appendix D.2. Constraints

Before describing the constraints, it is instructive to first
explain the spatial hierarchy and understand the assumptions.
Fig. D.3 illustrates the relationship between parent block, cells
and input blocks (sub-blocks) of intermediate scale. Conceptu-
ally, the whole 3D space is spanned by parent blocks which rep-
resent uniform, non-overlapping tiles positioned with respect to
the anchor point, block origin. Each parent block may be iden-
tified by an index p = (px, py, pz) obtained via uniform quan-
tisation given the origin o = (ox, oy, oz) and parent block size,
(Px, Py, Pz). Each parent has internal structure — each is divid-
ed by the minimum block size into (nx×ny×nz) cells in the same
manner. A cell is the smallest spatial unit. The cell “walls” dic-
tate what type of merges are possible within a parent block. All
input blocks and merged blocks must adhere to this structure,
i.e., each consisting of one or more whole cells.

block origin 

parent block (1,0) 

cell 

sub-blocks 

… 

…
 Px 

Py 

minimum block 
dimensions 

parent block (0,0) 

sub-blocks with 
orange label inside a 
parent block (px,py) 

… 

…
 

one possible 
merge outcome 

Problem instance Spatial hierarchy 

…
 

input output 

Figure D.3: Block merging spatial hierarchy

The assumptions are: 1) all input sub-blocks have dimen-
sions which are integer-multiples of the minimum block; 2) all
blocks must be rectangular prisms; 3) no sub-block straddles
the boundary of any parent block; 4) edges of input and merged
blocks must align perfectly with the internal grid lines of the
parent block to which they belong; 5) only sub-blocks from the
same class and parent may be merged.

Appendix D.3. Broad strategy

Beside some changes to the cell-expansion feasibility test,
the block consolidation strategy based on coordinate-ascent
merging is almost directly applicable to this problem. At a high
level, the strategy comprises the following steps.

1. Establish an input sub-block to parent block mapping.
2. Divide and conquer (compartmental processing)

• Each problem instance is restricted to a set of input
blocks associated with (indexed by) a parent block.
This is highly amendable to parallel processing.

3. Within each parent block, process each category (collec-
tion of input blocks with the same class label) in turn.

• The position / extent of sub-blocks undergoing con-
solidation are maintained by a 3D cell occupancy
map and stateful objects.
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4. A modified coordinate-ascent merging algorithm is used
to merge blocks from the same parent and class.

• Feasibility of cell expansion is governed by specif-
ic rules which depend on the merging convention.
However, the general goal remains the same, it still
cycles through the x, y and z-coordinate one-by-one
to consider if incremental expansion is possible.

Appendix D.4. Feasibility of cell expansion
For a parent block with cell dimensions (Kx,Ky,Kz), a 3D

cell occupancy map θ with identical dimensions is used to man-
age merging states. To initialise this object, the cells occupied
by each input block with the same label are set to 1 (active).
A default value of 0 is set for the remaining (inactive) cells to
signify a different domain classification. To advance this dis-
cussion, it is helpful to define a pooling function,

ζv(n,k) =

kz−1∑
dz=0

ky−1∑
dy=0

kx−1∑
dx=0

I(θ(nx + dx, ny + dy, nz + dz) = v)

(D.1)

which counts the number of cells with label value v over a sup-
port interval that extends from n = (nx, ny, nz) ∈ Z3 (the mini-
mum cell coordinates) to n+k−1 = (nx +kx−1, ny +ky−1, nz +

kz − 1) (the maximum cell coordinates) where k represents the
provisional size of a block undergoing expansion. At any point
during the coordinate-ascent algorithm, an incremental expan-
sion δ ∈ Z3 — typically δ ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} — is
feasible if ζ1(n,k +δ) = (kx + δx) · (ky + δy) · (kz + δz) for a block
with current cell dimensions k.

Using this definition, the coordinate-ascent merging proce-
dure from Section 2.3 as used in the SRUS (spatial restructur-
ing using surfaces) framework is formally described in Algo-
rithm 1 on page 7.

Appendix D.5. Modifications
There are two key differences in the BlockMerge (BM)

case. First, the boolean occupancy map θ ∈ {0, 1}Kx×Ky×Kz

now holds sub-block indices and becomes multi-valued, viz.,
θ ∈ ZKx×Ky×Kz . Second, when a block expansion step is feasible
in one of the coordinate directions, the increment takes on the
dimension of the block (or blocks) along the axis of expansion;
this being typically larger than 1. Merging states are managed
using an ordered2 list of structure similar toM in Algorithm 1,
where each structure initially contains the minimum vertex of
an input block v(b)

min, its cell dimensions s = (sx, sy, sz) ∈ Z3

which can grow, the block label λ(b) and a boolean flag, sub-
sumed, which is set to false. The idea is to revise s, the block
dimensions expressed in terms of cells, as a block grows; blocks
which have been swallowed are invalidated by setting subsumed
to true and will be ignored in subsequent iterations. This effec-
tively results in a shrinking set, the coalesced blocks are the

2Objects of type M are sorted in ascending order by the number of cells
within each block, then by the minimum vertex coordinates to break ties. This
priority gives smaller blocks the earliest opportunity to grow.

surviving entries when the algorithm terminates. The algorithm
continues as long as the cell count changes for any block be-
tween iterations. Details are given in Algorithm 2 on page 8.

Appendix D.6. Cell expansion feasibility test

For block merging, Algorithm 2 has essentially the same
blueprint as Algorithm 1. The main difference is the acceptance
criteria for each expansion step, see FeasibleCellExpansion in
lines 17, 24 and 31 in Algorithm 2. This is explained with the
aid of Fig. D.4. When block merging is attempted, the expan-
sion step proposes an elongation of the current block along one
of the axes of expansion. The volumetric difference, before and
after the proposed expansion, is referred as the delta region.
Fig. D.4 further illustrates 5 situations where a merge with ad-
jacent block(s) are infeasible. A proposed expansion step is
feasible when two conditions are satisfied: 1) the dimension a-
long the axis of expansion is the same for all adjoining blocks
in the delta region; 2) the lateral dimensions of these adjoining
blocks are compatible with the current block; in other words,
their cross-sections must join perfectly. The computation insid-
e FeasibleCellExpansion is described in Subroutine 2.
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Figure D.4: Delta region and sub-block expansion feasibility tests

Appendix D.7. Merging conventions

In Algorithm 2, we have a block merging procedure that pre-
serves the boundary of the input blocks, in the sense that it does
not introduce new partitions (sub-divisions) that are not already
present in a parent block. This is because when a sub-block
is subsumed, it is swallowed whole by another block. This
merging convention is referred as persistent block memory
for future reference. A key property is that each input block is
mapped uniquely to a single block in the merged model.
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In contrast, Algorithm 1 implicitly erases sub-block bound-
aries before block consolidation begins. This merging conven-
tion is referred as dissolve sub-block boundaries, it generally
achieves higher compaction because it makes no distinction be-
tween input blocks from the same class and parent. It is able
to grow blocks more freely and produce fewer merged block-
s since the size compatibility constraints between individual
blocks no longer apply when they are treated as one. This can
be useful for healing a fractured block model. It can consoli-
date sub-blocks introduced by a false boundary from a previ-
ous surface update. Under the “dissolve sub-block boundary”
convention, coordinate-ascent can start from a clean slate. Sub-
blocks in a fragmented area may grow back to the largest pos-
sible extent even if individual sub-block dimensions or internal
boundary alignments are otherwise incompatible. It does not
suffer the negative consequences of block structure decompo-
sition from previous iterations. Some of these differences are
shown in Fig. D.5.

Fragmented Input Blocks 

Dissolve sub-block boundaries Persistent block memory 

Underlying Cell Structure 

minimise block aspect ratio 
Figure D.5: Example of differences under the ‘persistent block memory’ and
‘dissolve sub-block boundaries’ block merging conventions

Appendix D.8. Fairness and regulating parameters

Both algorithms include optional parameters. The token life
span, T , limits the number of uninterrupted sequential merging
steps a block can take during coordinate-ascent, to moderate
aggressive merging behaviour. This token value is decremented
by 1 after each x-y-z cycle. When it reaches zero, the current
block must cease expansion and give other blocks the opportu-
nity to grow. When every block in the queue has had its turn,
this block may resume expansion. The token value is reset to T
each time a block takes possession. By default, T is set to in-
finity so no progress is ever halted. An upper bound on merged
block dimensions is given by (Mx,My,Mz) ∈ R3. By default,
this is set to the parent block size to remove any restriction.

Appendix D.9. Scan sequences to improve block aspect ratio

The final design consideration relates to the order in which
input blocks are processed during coordinate-ascent. The main
observation from Fig. D.6 is that depending on the shape and
direction of the class boundary, a sequential algorithm may gen-
erate a stair-case artefact, producing long narrow blocks which
certain applications may find objectionable. The incremental

block expansion may be obstructed by the boundary if it ap-
proaches from a certain direction as it cycles through each co-
ordinate axis; this can lead to excessive growth in an unimpeded
direction. In general, no single deterministic scanning sequence
(e.g., increasing x, increasing y and increasing z as in the “stan-
dard” case) can be optimal in all situations. One way to over-
come this is by introducing multiple scan patterns. For instance,
instead of scanning (processing blocks) top-down, left-to-right,
one can scan from bottom-up, from right-to-left. This is equiv-
alent to flipping the x and y axes.

Accordingly, there are 8 distinct possibilities given we have
3 axes, these scan sequences may be abbreviated as π0 =

(+x,+y,+z), π1 = (−x,+y,+z), π2 = (+x,−y,+z) and so forth,
where a negative sign indicates reversal of the relevant axis.
The algorithm will try all 8 scan patterns and select the result
which minimises an objective function. In this work, the pre-
ferred solution argminπ fπ({∆(b,π)}b∈Sp,λ ) minimises the volume-
weighted block aspect ratio, the objective function may be ex-
pressed as

fπ({∆(b,π)}b∈Sp,λ ) =

∑
b∈Sp,λ v(b,π) ·

max{∆(b,π)
x ,∆(b,π)

y ,∆(b,π)
z }

min{∆(b,π)
x ,∆(b,π)

y ,∆(b,π)
z }∑

b∈Sp,λ v(b,π)

(D.2)

where merged block b belongs to class λ in parent block p,
(∆(b,π)

x ,∆(b,π)
y ,∆(b,π)

z ) ∈ R3 and v(b,π) represent the dimensions and
volume of the merged block, obtained from scan sequence π.

standard scan 
(+x,+y,+z) 

reversed scan 
(-x,-y,+z) 

multiple scans 
(best of both)                        

 

Input blocks 

Block merge results 

Figure D.6: Block merging results from different scan sequences

Appendix D.10. Scan sequence implementation
In practice, the eight individual scan patterns are not pro-

grammed explicitly. Instead, sub-blocks are rearranged within
a parent block before coordinate-ascent, in such a way that a
specific scan sequence is attained when the permuted data is
subject to the standard scan. This is done to avoid code dupli-
cation and preserve the existing logic.3

The approach is explained in Fig. D.7. The key observation is
that only the standard scan is necessary (we do not need to im-
plement 8 different scans directly) provided the cells occupied

3An explicit implementation for each scan pattern would involve 23 nested
for loops, this includes the standard / existing scan pattern — for (z = zmin;
z < zmax; z++) for (y = ymin; y < ymax; y++) for (x = xmin; x < xmax; x++)
— and seven other combinations including, for instance, the (-x,-y,+z) scan
pattern — for (z = zmin; z < zmax; z++) for (y = ymax − 1; y ≥ ymin; y- -) for
(x = xmax − 1; x ≥ xmin; x- -). This is not easy to maintain.
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by the input blocks are permuted to reflect a reversal of the rel-
evant axes. For instance, a bottom–up, right–left scan sequence
on the original block data may be implemented by mapping
the white cells from the south-east corner to north-west cor-
ner (see Fig. D.7 (top)), then applying the “standard” top-down,
left-right scan. The two are equivalent. Fig. D.7 (bottom) out-
lines the steps involved.

a) (Forward permutation) For each input block labelled
white in parent block p, populate the occupancy map by
sampling cells according to the direction of each axis spec-
ified in the scan instruction.4

b) (Perform merging in rotated frame) Apply coordinate-
ascent merging algorithm to permuted data using the stan-
dard scan pattern.

c) (Inverse permutation) Register the location of merged
blocks in the original frame using table-lookup.

Scan Instruction 
top-down, left-right 
(+x,+y) scan pattern 

bottom-up, right-left 
(-x,-y) scan pattern 

↔ 

equivalent 
(+x,+y) scan 

5 4 

11 10 

15 14 17 16 

21 20 23 22 

27 26 29 28 

33 32 35 34 

25 24 

31 30 

→ 

5 4 

11 10 

15 14 17 16 

21 20 23 22 

27 26 29 28 

33 32 35 34 

25 24 

31 30 

Cell indices in  
original frame 

Forward 
Permutation 

→ 

5 4 

11 10 

15 14 17 16 

21 20 23 22 

27 26 29 28 

33 32 35 34 

25 24 

31 30 

Perform merging in 
 rotated frame 

→ 

Inverse 
Permutation 

5 4 

11 10 

15 14 17 16 

21 20 23 22 

27 26 29 28 

33 32 35 34 

25 24 

31 30 

Implementation 
populate cells in 
occupancy grid 

coordinate-ascent 
merging algorithm 

spatial registration 
look up actual coords 

Figure D.7: Block merging scan sequence implementation

Synthesizing all the ideas, Algorithm 3 (page 10) describes
the final block merging strategy which supports different merg-
ing conventions, multiple scan patterns and block aspect ratio
optimisation. To elaborate on the the multi-threading aspect of
the code, interleaved parent blocks are processed by individual
threads within a region of interest. This choice, see interleaved
parent indices in line 3 of Algorithm 3, is motivated by load
balancing consideration. The intention is to spread the com-
putation load evenly amongst the threads by decoupling spatial
correlation, to avoid situations where too few (or too many) of
the blocks processed by a thread actually intersect a surface.

4In reality, the occupancy map is a 3D array, but for simplicity, we only
draw it in 2D.

Appendix E. Pseudocode

This pseudocode comprises the following:

Algorithm 1:. Coordinate-ascent merging algorithm v1
(as used for spatial restructuring in Section 2.3 of (Leung,
2020))

Subroutine 1:. Compute sub-block properties

Algorithm 2:. Coordinate-ascent merging algorithm v2
(as used for model de-fragmentation in Appendix D)

Subroutine 2:. Feasibility tests and state updates during
block expansion

Algorithm 3:. Block merging with multiple scans and opti-
mised block aspect ratios

6
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Algorithm 1 Coordinate-ascent merging algorithm (as used in the spatial restructuring SRUS framework in Section 2.3)

Pre-requisite: Occupancy map, θ, is populated s.t. all active
cells that belong to sub-blocks of class λ are set to 1.

Assumption: Cells in occupancy map are enumerated in
raster-scan order, thus index i(nx, ny, nz) = (nzKy + ny)Kx +

nx. Parent block index is denoted p.
Input: θ ∈ {0, 1}Kx×Ky×Kz

Parameters: Parent block cell dimensions: Kx, Ky, Kz ∈ Z
Min. block dimensions: ∆block

min ∈ R
3

Max. merge cell dimensions: Mx, My, Mz ∈ Z
Token life span: T ∈ Z+

Variables: Active cells: a = [] (initially an empty list)
Merged blocks: M = Ø (initially an empty set)
Stride length: s = (sx, sy, sz) ∈ Z3

Provisional block dims: d = (dx, dy, dz) ∈ Z3

Min. coordinates of current block: v(b)
min ∈ R

3

Obstacles count: barriers
Iterations remaining: i ∈ Z

1: Find all active cells: a← IndexOfOccupants(θ)
2: Set count = 0, noccupant = |a|
3: while number of active cells |a| ≥ 1 do
4: Set i = T and sx = sy = sz = 1
5: if |a| = 1 then
6: M.append( SubBlockProperties(v(b)

min, s, ∆(block)
min , λ) )†

Note † see description in Subroutine 1
7: break
8: end if
9: Set n = (nx, ny, nz) = Subscript( cell a[0] )

where nx, ny, nz ≥ 0
10: while true do
11: barriers = 0
12: (dx, dy, dz)← (min{sx + 1,Kx − nx}, sy, sz)
13: if (dx ≤ Mx and dy ≤ My and dz ≤ Mz)

and (dx > sx) and ζ1(n,d) = dx · dy · dz then

14: sx = dx
15: else
16: barrier += 1
17: end if
18: (dx, dy) = (min{sx,Kx − nx},min{sy + 1,Ky − ny})
19: if (dx ≤ Mx and dy ≤ My and dz ≤ Mz)

and (dy > sy) and ζ1(n,d) = dx · dy · dz then
20: sy = dy
21: else
22: barrier += 1
23: end if
24: (dy, dz) = (min{sy,Ky − ny},min{sz + 1,Kz − nz})
25: if (dx ≤ Mx and dy ≤ My and dz ≤ Mz)

and (dz > sz) and ζ1(n,d) = dx · dy · dz then
26: sz = dz
27: else
28: barrier += 1
29: end if
30: i –= 1
31: if (count + sxsysz =noccupant)

or (barriers=3) or (i=0) then
32: break (no further expansion is possible)
33: end if
34: end while
35: Compute sub-block anchor point: xmin = v(b)

min+n◦∆(block)
min

36: M.append( SubBlockProperties(xmin, s,∆(block)
min , λ) )

37: Update occupancy map: set θ[cx, cy, cz] to 0 (inactive)
for all cells bounded by xmin and xmax = xmin + s.

38: count += sxsysz
39: Find remaining active cells: a← IndexOfOccupants(θ)
40: end while
Output: consolidated sub-blocksM

Subroutine 1 Compute sub-block properties

1: SubBlockProperties(v(b)
min, s, ∆(block)

min , λ)
2: Compute:

sub-block dimensions: ∆(b)
sub-block = s ◦ ∆(block)

min ,
sub-block max coordinates: v(b)

max = v(b)
min + ∆

(b)
sub-block

sub-block centroid: c(b)
sub-block = 1

2 (vmin + v(b)
max) ∈ R3

sub-block label: λ(b) ← λ
3: return 〈c(b)

sub-block,∆
(b)
sub-block, λ

(b)〉

note: ◦ denotes the Hadamard (element-wise) product.
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Algorithm 2 Coordinate-ascent merging algorithm (as used in block model de-fragmentation in Appendix D.5)

Pre-requisites: The list of merged blocksM is initialised with
one tuple 〈v(b)

min, s(b), λ(b), nprev(b)
cells , ncurr(b)

cells , subsumed(b) = 0〉
for each sub-block b in class λ within the parent block,
where v(b)

min ∈ R3, s(b) ∈ Z3, nprev(b)
cells and ncurr(b)

cells denote
the sub-block minimum vertex, sub-block cell-dimensions,
number of cells in the previous and current iteration, re-
spectively. The occupancy map θ is populated such that
each active cell is assigned the relevant sub-block index,
viz., b; all remaining cells are set to -1 (inactive).

Input: M (with all nprev(b)
cells set to 0) and θ ∈ ZKx×Ky×Kz

Parameters: same as Algorithm 1
Variables: Active sub-blocks: a = [] (initially an empty list)

Otherwise, similar to Algorithm 1
1: do
2: Sort list of block properties,M, by cell count,

then minimum vertex, in ascending order.
3: Find all active sub-blocks:

a← FindAllActiveSubBlocks(M) where subsumed=0
4: if |a| = 1 then
5: break
6: end if
7: for each b in ordered sub-blocks a do
8: Set nprev(b)

cells = ncurr(b)
cells

9: if subsumed(b) then
10: continue
11: end if
12: Set i = T and (sx, sy, sz) =

(
s(b)

x , s(b)
y , s(b)

z

)
13: Set n= (nx, ny, nz)=Subscript(lowest cell in block b)
14: while true do
15: barriers = 0
16: (dx, dy, dz)← (min{sx + 1,Kx − nx}, sy, sz)
17: if (dx > sx) and FeasibleCellExpansion(θ,M, b |

18: (nx+sx, ny, nz), (nx+dx, ny+sy, nz+sz), “x”) then
19: sx = s(b)

x
?

20: else
21: barrier += 1
22: end if
23: (dx, dy) = (min{sx,Kx − nx},min{sy + 1,Ky − ny})
24: if (dy > sy) and FeasibleCellExpansion(θ,M, b |
25: (nx, ny+sy, nz), (nx+sx, ny+dy, nz+sz), “y”) then
26: sy = s(b)

y
?

27: else
28: barrier += 1
29: end if
30: (dy, dz) = (min{sy,Ky − ny},min{sz + 1,Kz − nz})
31: if (dz > sz) and FeasibleCellExpansion(θ,M, b |
32: (nx, ny, nz+sz), (nx+sx, ny+sy, nz+dz), “z”) then
33: sz = s(b)

z
?

34: else
35: barrier += 1
36: end if
37: i –= 1
38: if (sx = Kx − nx and sy = Ky − ny and sz = Kz − nz)
39: or (barriers=3) or (i=0) then
40: break (no further expansion is possible)
41: end if
42: end while
43: end for
44: while ncurr(b)

cells , nprev(b)
cells for any block inM

45: Remove all subsumed sub-blocks fromM
Output: consolidated sub-blocksM
note ?: The properties of M(b) are updated implicitly by
FeasibleCellExpansion when the expansion is feasible.
Details are given in Subroutine 2.
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Subroutine 2 Feasibility tests and state updates during block expansion

Parameters: Parent block cell dimensions: (Kx,Ky,Kz) ∈ Z3

Current block cell dimensions: (sx, sy, sz) ∈ Z3

Max. merge cell dimensions: (Mx,My,Mz) ∈ Z3

Mutable objects: Occupancy map: θ ∈ ZKx×Ky×Kz

List of block properties: M
Notations: ◦ Delta region: R

◦ Length along axis of expansion for sub-blocks
found in the delta region: lb′∈R(direction)
◦ Number of cells from sub-blocks found in the

delta region: n(cells)
R

◦ Unique set of sub-blocks in delta region: S
1: FeasibleCellExpansion(θ,M, b |

(n0
x, n

0
y, n

0
z), (n1

x, n
1
y, n

1
z), direction)

2: if n0
x ≥ Kx or n0

y ≥ Ky or n0
z ≥ Kz then

3: return false
4: end if
5: for each cell (cx, cy, cz) in R do
6: Let sub-block index b′ = θ(cx, cy, cz)
7: if b′ , −1 then
8: S.insert( b′ )

else R contains at least one foreign cell
9: return false

10: end if
11: end for
12: if lb′∈R(direction) is identical for all blocks in R then
13: Set nextend = lb′∈R(direction) ∈ Z+

14: else
15: return false (failed uniform length requirement)
16: end if
17: Let S̃ = {b′ ∈ S | subsumed (b′) = false} ⊆ S
18: if direction is “x” then

19: if (sx + nextend, sy, sz) exceeds (Mx,My,Mz) then
20: return false
21: else
22: Compute n(cells)

R
from blocks b′ ∈ S̃

23: Set compatible = (n(cells)
R

= nextend · sy · sz)? true : false
24: end if
25: else if direction is “y” then
26: if (sx, sy + nextend, sz) exceeds (Mx,My,Mz) then
27: return false
28: else
29: Compute n(cells)

R
from blocks b′ ∈ S̃

30: Set compatible = (n(cells)
R

= sx · nextend · sz)? true : false
31: end if
32: else
33: if (sx, sy, sz + nextend) exceeds (Mx,My,Mz) then
34: return false
35: else
36: Compute n(cells)

R
from blocks b′ ∈ S̃

37: Set compatible = (n(cells)
R

= sx · sy · nextend)? true : false
38: end if
39: end if
40: if compatible then
41: Update block properties listM
42: Set subsumed (β) = true ∀β ∈ S̃
43: Set nprev(b)

cells = ncurr(b)
cells

44: Set ncurr(b)
cells +=

∑
β∈S̃ ncurr(β)

cells
45: Update occupancy map θ
46: Set θ(cx, cy, cz) = b for all cells in blocks β ∈ S̃.
47: end if
48: return compatible
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Algorithm 3 Block merging with multiple scans and optimised block aspect ratios

1: parallel for thread t from 0 to nthread−1 do
2: Set coalesced blocks(t) = Ø
3: for parent block p in {t + i · nthread}i∈Z and p<n(block)

parent do
4: Find input blocks Bp contained in p
5: for each class λ within p do
6: Find blocks Bp,λ with label λ
7: Let the cost for current best solution f∗ = ∞

8: if convention is DissolveSubBlockBoundaries then
9: for each scan pattern π do

10: Populate occupancy map θ ∈ {0, 1}Kx×Ky×Kz s.t.
active cells in Bp,λ are set to 1; 0 otherwise.

11: Invoke coordinate-ascent (Algorithm 1) to
obtain the consolidated blocksMπ

12: Compute the cost f (Mπ) †

13: if f∗ > f (Mπ) then
14: Set f∗ = f (Mπ) andM∗ =Mπ

15: end if
16: end for
17: coalesced blocks(t).append(M∗ )
18: else if convention is PersistentBlockMemory then
19: for each scan pattern π do

20: Populate occupancy map θ ∈ ZKx×Ky×Kz s.t. all
active cells in Bp,λ are set to the relevant sub-
block index b ∈ Bp,λ; -1 otherwise.

21: Invoke coordinate-ascent (Algorithm 2) to
obtain the consolidated blocksMπ

22: Compute the cost f (Mπ) †

23: if f∗ > f (Mπ) then
24: Set f∗ = f (Mπ) andM∗ =Mπ

25: end if
26: end for
27: coalesced blocks(t).append(M∗ )
28: end if
29: end for
30: end for
31: Signal when thread t completes its task
32: end parallel for
33: Aggregate results: solution← {coalesced blocks(t)}

Output: solution
note:† using the objective function based on
volume-weighted block aspect ratio, for instance.
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Appendix F. Octree decomposition and merging

The two octree schemes considered in the paper are the stan-
dard octree decomposition, and octree with intra-scale merging.
Starting at full resolution (d = 0), at each level of the spatial hi-
erarchy, a rectangular block with dimensions ∆(d) ∈ R3 may be
split into eight sub-blocks (or cells) called an octant, where the
dimensions of each sub-block are essentially halved along each
axis, yielding ∆(d+1) = 1

2∆
(d). A split is performed when 2 or

more of its sub-blocks at resolution ∆(d+1) carry different label-
s. This decomposition is performed recursively and stops only
when the 3D block region becomes homogeneous (all 8 cells
have the same label) or when the maximum decomposition lev-
el D is reached. Such hierarchical structures are well studied
in the literature, see (Samet, 1988) and (Tamminen and Samet,
1984) for instance. The purpose of this section is to clarify what
intra-scale block merging means in this work, and how it relates
to the standard octree.

(a) Quad-tree decomposition for a sparse object 
      based on block surface intersection 
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white cells (at Level 3) 
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(b) Tree structure – Leaf nodes use base-4 encoding for spatial position 
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(c) Quad-tree decomposition for a sparse object with intra-scale merging 
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Figure F.8: Octree for encoding sparse object such as edges

Octree decomposition is a popular technique for encoding
sparse data such as edge pixels in an image array. Fig. F.8 pro-
vides an example whereby block surface intersections are lo-
calised by blue cells in (a-left). A complete quad-tree decompo-
sition of this region into sub-blocks at 1

2 , 1
4 and 1

8 scale is shown
in (a-middle). Following a particular quadrant cell scanning or-
der, the 2D pattern may by represented by the tree-structure
in (b). Intra-scale block merging has the specific meaning de-
scribed in (c) where coalesced blocks are limited to adjacent

cells within a quadrant; the arrows in (c-left) and (c-middle)
show this happening at two spatial scales, d = 3 and d = 2. The
final result after octree decomposition and intra-scale merging
is shown in (c-right). This picture illustrates that further merg-
ing is in fact possible — for instance between the white cells
002 and 020, or blue cells 003 and 021 — if inter-scale merging
is permitted. We opted not to challenge these rules for the octree
approach since these merging opportunities have already been
exploited by the proposed methods, and intra-scale merging has
its place in our performance comparison. For simplicity, the re-
gion is treated as a 2D block, however all aspects generalise
to three-dimensions (from quadrant to octant) and all processes
involved in the actual experiments operate in 3D.
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(c) Quad-tree decomposition with intra-scale merging 
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(d) Tree structure with intra-scale merging 
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Figure F.9: Octree decomposition and intra-scale merging for multiple regions

Extending these ideas to encode non-sparse regions, we ob-
serve that standard octree decomposition works in a top-down
manner and has no innate ability for labelling cells at the min-
imum block size. Therefore, ray-tracing is used (since it forms
part of the block model spatial restructuring workflow) to label
cells as 0 or 1; colouring cells in gold or green in Fig. F.9(a-
middle) depending upon which side of the surface they are on.
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Applying octree decomposition produces the tree-structure
shown in Fig. F.9(b) where split nodes are labelled -1, leaf
nodes are labelled 0 or 1 (when there are two regions) and
coloured gold or green accordingly. Result obtained with fur-
ther intra-scale merging is shown in (c). As before, arrows indi-
cate the blocks which have been merged within a quadrant at a
given scale. The resultant tree-structure after intra-scale merg-
ing is depicted in (d). Comparing with (b), branches connecting
with blocks which have been subsumed are evidently pruned
with the corresponding nodes removed. Our earlier remarks
on further inter-scale merging opportunities also exist here, for
instance, blocks marked with asterisk in (c-right) can all po-
tentially be combined into a single block. Although we focused
our attention on two regions in this example, all relevant aspects
generalise to three or more regions when multiple surfaces are
involved.

Appendix F.1. Major difference between quadtree and octree

For an octree, the major difference with respect to quadtree
are the candidates considered during intra-scale merging. Fol-
lowing the octant cell scanning order shown in Fig. F.9 (a-right),
prospective 2-cell merge candidates include basically 12 edges:
viz., {(0, 1), (0, 2), (1, 3), (2, 3)} and {(4, 5), (4, 6), (5, 7), (6, 7)}
from the top and bottom sides, and similarly {(2, 6), (3, 7)} ∪
{(0, 4), (1, 5)} from the north and south sides of an octant.
Prospective 4-cell merge candidates include 6 square faces:
{(0,1,2,3), (4,5,6,7), (0,1,4,5), (2,3,6,7), (0,2,4,6), (1,3,5,7)}.

Appendix G. Detailed octree subblocking comparison

This section provides a more detailed breakdown of the mod-
el block count results presented in Sec. 8.1 of (Leung, 2020).
Henceforth, we use the word ‘Octree’ to denote standard octree
decomposition. When the ‘+Merge’ suffix is added, intra-scale
merging is attempted between compatible cells within each oc-
tant. This means, edge-connected cells within the same octant
may be combined in groups of two or four to form a rectangular
or squared block as described above (in Appendix F.1). How-
ever, inter-scale merging across different decomposition level-
s is not permitted. ‘Proposed-P’ refers to the proposed block
merging algorithm performed under the persistent block mem-
ory convention. ‘Proposed-D’ refers to the same under the dis-
solved subblock boundary convention. ‘Domain’ means geo-
logical domain and ‘% volume’ means percentage of the total
volume in the modelled region.

To promote spatial awareness, an animated sequence of the
test site’s domain structure is shown layer-by-layer in Table G.1
where the domain colour palette matches the colour labels used
in the tables. A geology background is not required to under-
stand this data. However, domain labels annotated by M, N and
H may be interpreted as ‘mineralised’, ‘non-mineralised’ and
‘hydrated’ domains, respectively, by geologists.
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Table G.1: Block model statistics: proposed methodology vs octree (with D=3 decomposition levels)

Domain % volume block count volume-weighted block aspect ratio
Octree Octree + Merge Proposed-P Proposed-D Octree Octree + Merge Proposed-P Proposed-D

� N0 0.012340 2644 1154 772 704 2.5 3.954896 9.251789 3.685130
� M0 0.012216 2422 1057 791 594 2.5 3.923701 6.925476 3.811883
� N1 2.071587 326463 123708 59908 52925 2.5 2.435113 3.252310 2.386576
� N2 0.571025 27523 11878 7256 7679 2.5 3.301445 4.297926 2.631313
� M1 0.000045 17 12 12 12 2.5 3.529412 3.088235 3.088235
� N3 0.247183 27769 12558 8132 8728 2.5 3.954645 6.093452 2.532378
� N4 0.318811 34279 15510 10080 10732 2.5 3.954323 6.095554 2.586614
� N5 1.036601 80587 35968 23032 23655 2.5 3.552698 5.208733 2.565268
� M2 0.074106 13096 5958 3710 3788 2.5 3.723641 5.582627 3.214119
� N6 1.996944 158170 70237 44619 45183 2.5 3.610081 5.044647 2.649020
� M3 0.426214 53367 24250 15604 15490 2.5 3.638962 5.590088 2.862343
� N7 1.058833 166835 75399 46713 47876 2.5 3.871672 5.621888 2.996686
� M4 0.112265 23454 11036 7113 7121 2.5 3.780942 5.277800 3.288215
� H0 0.332034 64151 29953 21128 19535 2.5 3.784879 7.178617 3.074582
� N8 2.363637 241316 106972 67694 69211 2.5 3.942829 5.903363 2.878910
� M5 0.035386 8595 4190 2824 2828 2.5 3.720205 6.229485 3.344340
� N9 1.500652 249267 111807 67270 68843 2.5 3.928390 5.649683 3.162396
� M6 0.005508 1579 811 576 568 2.5 3.527364 4.199520 3.340855
� H1 0.052937 12489 6035 4357 4132 2.5 3.818116 6.895195 3.289241
� N10 5.062708 394979 173877 108587 110817 2.5 3.756453 5.372227 2.753414
� M7 0.230237 31048 13958 8972 8687 2.5 3.753732 4.868516 2.861059
� N11 4.327004 450788 198725 123289 126389 2.5 3.966091 5.891937 2.966619
� M8 0.119425 21038 9726 6387 6238 2.5 3.602132 5.310738 3.053729
� N12 6.059302 517338 225301 138735 141283 2.5 3.893502 5.591457 2.858506
� M9 0.092165 15999 7252 4671 4601 2.5 3.480721 5.185372 2.839088
� H2 0.193627 42416 20254 14320 13380 2.5 3.691417 6.955868 3.105813
� N13 3.049206 474133 208258 121712 124319 2.5 3.935326 5.502560 3.186988
� M10 0.005196 1692 822 563 526 2.5 3.379135 5.267176 3.388906
� N14 0.001007 339 180 138 133 2.5 3.366142 5.218110 3.547769
� N15 68.631674 797448 323952 175932 174585 2.5 2.599801 2.867128 2.506040
� M11 0.000127 48 28 20 23 2.5 3.645833 5.781250 3.564583

Total (avg. by volume) 4241289 1830826 1094917 1100585 2.5 2.958828 3.668188 2.615373
Total (avg. by block count) same same same same 2.5 3.535403 5.068056 2.839873

Ratio 100.000 43.167 25.816 25.949

Animated sequence — birds eye view of Site 8’s spatial structure
Geological domains are peeled back layer by layer in this animation
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Table G.2: Block model statistics: proposed methodology vs octree (with D=4 decomposition levels)

Domain % volume block count volume-weighted block aspect ratio
Octree Octree + Merge Proposed-P Proposed-D Octree Octree + Merge Proposed-P Proposed-D

� N0 0.012367 11742 5065 3317 2746 2.5 3.900329 15.549850 4.059046
� M0 0.012224 10946 4650 3420 2201 2.5 3.909655 10.466585 4.674493
� N1 2.071568 1429469 533237 223538 185677 2.5 2.438087 4.852193 3.363062
� N2 0.571042 108496 47062 26560 28328 2.5 3.330618 6.133705 2.987043
� M1 0.000039 112 62 45 44 2.5 3.592437 4.118487 3.170588
� N3 0.247097 116150 52202 31105 33811 2.5 3.882805 9.738552 3.590038
� N4 0.318835 143282 64352 38541 41093 2.5 3.928394 9.994956 3.620897
� N5 1.036702 342263 150890 87578 89680 2.5 3.623427 8.200493 3.193486
� M2 0.074196 60521 26754 14949 15198 2.5 3.768124 8.326254 3.820477
� N6 1.996801 667620 292632 169023 170337 2.5 3.644469 7.759336 3.312802
� M3 0.426296 235590 104610 60747 59749 2.5 3.610870 8.889136 3.776128
� N7 1.058725 728816 324163 182289 186255 2.5 3.892632 8.553657 3.970692
� M4 0.112501 110475 49990 28969 28582 2.5 3.779309 7.580900 4.003741
� H0 0.331797 298282 135474 88804 78141 2.5 3.779701 11.899441 3.762755
� N8 2.362666 1022988 450290 259668 261922 2.5 3.936937 9.418536 3.851701
� M5 0.035805 45500 21242 12706 12578 2.5 3.677538 9.116177 3.699823
� N9 1.501456 1098197 485024 264369 268390 2.5 3.963615 8.493589 4.080947
� M6 0.005730 9258 4734 2985 2929 2.5 3.564548 5.640211 3.770489
� H1 0.053013 62734 29214 19290 17460 2.5 3.701885 10.991420 3.706879
� N10 5.064220 1663577 727924 410459 414897 2.5 3.794050 8.463884 3.543067
� M7 0.228323 142484 61726 35310 33610 2.5 3.726269 7.352394 3.805164
� N11 4.325235 1895420 828568 466319 473527 2.5 3.942704 9.354241 4.004534
� M8 0.119550 99113 44273 25985 24900 2.5 3.579750 7.963333 3.817275
� N12 6.059267 2143315 928956 519128 522118 2.5 3.921219 8.812658 3.766239
� M9 0.092176 73872 32446 18975 18255 2.5 3.478816 8.269290 3.744605
� H2 0.193962 201251 92622 60682 54519 2.5 3.722921 11.130710 3.710936
� N13 3.050039 2038137 885891 469694 475684 2.5 3.970251 8.126027 4.180359
� M10 0.005201 9332 4259 2611 2405 2.5 3.427114 7.226263 3.727820
� N14 0.001046 2086 1004 647 610 2.5 3.463970 7.412168 3.983059
� N15 68.632008 2643443 1065825 525508 501270 2.5 2.605537 3.283658 2.576202
� M11 0.000115 284 143 89 102 2.5 3.832853 8.900865 2.621326

Total (avg. by volume) 17414755 7455284 4053310 4007018 2.5 2.968178 4.901418 2.941797
Total (avg. by block count) same same same same 2.5 3.585874 7.861600 3.650470

Ratio 100.000 42.810 23.275 23.009

Animated sequence of Site 8’s spatial structure
X cross-sections of the same geological domains
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Table G.3: Block model statistics: proposed methodology vs octree (with D=5 decomposition levels)

Domain % volume block count volume-weighted block aspect ratio
Octree Octree + Merge Proposed-P Proposed-D Octree Octree + Merge Proposed-P Proposed-D

� N0 0.012187 54650 22512 13500 10598 2.5 3.937759 28.207846 5.272790
� M0 0.012225 47666 19995 14373 8581 2.5 3.880556 17.203926 6.303496
� N1 2.069887 5966122 2206483 856985 691068 2.5 2.448336 8.103377 5.186617
� N2 0.569810 465501 196686 101427 106403 2.5 3.341298 9.875999 3.403828
� M1 0.000040 646 333 225 211 2.5 3.638946 7.322417 2.796074
� N3 0.246775 482523 214397 120786 128908 2.5 3.872228 17.465091 5.425162
� N4 0.318412 593948 264225 149991 157914 2.5 3.893686 18.004315 5.075332
� N5 1.035730 1441073 626411 340497 345133 2.5 3.648167 14.088016 3.945783
� M2 0.074129 266189 114990 59476 59692 2.5 3.725392 14.391746 5.381985
� N6 1.994655 2809366 1215883 656664 653464 2.5 3.665340 13.196620 4.206202
� M3 0.426116 994488 437691 238458 232800 2.5 3.634994 15.740771 5.344710
� N7 1.057534 3076723 1352508 715135 728884 2.5 3.909520 14.793386 6.200759
� M4 0.112500 484807 215842 116435 114125 2.5 3.801134 12.542677 5.895113
� H0 0.331752 1295410 578825 360946 308160 2.5 3.779019 21.440046 5.554469
� N8 2.361292 4261395 1856015 1009360 997440 2.5 3.932490 16.538731 5.283464
� M5 0.035589 209842 94582 51685 50865 2.5 3.681174 15.741827 5.199280
� N9 1.500113 4615285 2017890 1041881 1049804 2.5 3.979482 14.656347 6.338921
� M6 0.005824 53198 25599 14448 14215 2.5 3.544744 8.629379 5.305402
� H1 0.052644 302851 133967 79652 70437 2.5 3.725562 19.455017 5.425445
� N10 5.059155 6903632 2989708 1582574 1573708 2.5 3.815540 14.647774 4.527278
� M7 0.229129 615542 261940 139458 129839 2.5 3.719217 12.449978 5.553382
� N11 4.322323 7841613 3398938 1800920 1801115 2.5 3.935243 16.360033 5.554397
� M8 0.119576 434074 190030 104029 98436 2.5 3.584765 13.754793 5.630620
� N12 6.055483 8847559 3800130 1995917 1975291 2.5 3.923066 15.285411 4.941555
� M9 0.092180 322413 139347 76104 71667 2.5 3.464583 14.724576 5.738100
� H2 0.193918 892552 402913 249416 217807 2.5 3.716055 19.805877 5.544980
� N13 3.048503 8456955 3650182 1837766 1853527 2.5 3.977186 13.698514 6.438980
� M10 0.005207 45786 20074 11478 10381 2.5 3.470138 11.670511 4.750513
� N14 0.001024 10736 4770 2806 2567 2.5 3.561028 13.049818 4.983007
� N15 68.656172 12271192 4599110 1865318 1741347 2.5 2.608728 4.109259 2.667184
� M11 0.000117 1564 760 452 457 2.5 3.635483 12.809443 2.827696

Total (avg. by volume) 74065301 31052736 15608162 15204844 2.5 2.972378 7.395642 3.456381
Total (avg. by block count) same same same same 2.5 3.585541 13.523983 5.078064

Ratio 100.000 41.926 21.074 20.529

Animated sequence of Site 8’s spatial structure
Y cross-sections of the same geological domains
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