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Abstract: There is an increasing number of rapidly growing repositories capturing the
movement of people in space-time. Movement trajectory compression becomes an ob-
vious necessity for coping with such growing data volumes. This paper introduces the
concept of semantic trajectory compression (STC). STC allows for substantially compressing
trajectory data with acceptable information loss. It exploits that human urban mobility
typically occurs in transportation networks that define a geographic context for the move-
ment. In STC, a semantic representation of the trajectory that consists of reference points
localized in a transportation network replaces raw, highly redundant position information
(e.g., from GPS receivers). An experimental evaluation with real and synthetic trajectories
demonstrates the power of STC in reducing trajectories to essential information and illus-
trates how trajectories can be restored from compressed data. The paper discusses possible
application areas of STC trajectories.

Keywords: trajectories, moving objects, semantic description, data compression, trans-
portation network, chunking, navigation, map matching

1 Introduction

Tracking devices mechanistically capture individual movement as trajectories that consist
of a series of positioning fixes. Consecutive fixes are co-located, in the sense that tem-
porally neighboring fixes refer to similar positions in space. As a result, trajectory data

*This full paper revises and extends an extended abstract version presented at the poster session of the 11th
International Symposium on Spatial and Temporal Databases, July 8-10, 2009, Aalborg, Denmark [39].
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4 RICHTER, SCHMID, LAUBE

is highly spatiotemporally autocorrelated and can be considered redundant. By contrast,
humans plan, perceive, and communicate journeys as legs traveled in geographic space,
typically following a street network or using train or bus lines. Especially in urban en-
vironments there are few alternatives to following available transportation infrastructure
network links. This paper exploits such semantic grounding of urban movement for com-
pressing trajectory data. In doing so, the paper addresses the GIScience priority of bridging
the “gulf between low-level observational data (fixes) and high-level conceptual schemes
(journeys) through which we as humans interpret, understand, and use that data” ([16], p
300).
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Figure 1: Problem overview (adapted from [39]). (a) Raw positional data as fixes (x,y,t tu-
ples); (b) trajectory in two-dimensional space, object moving from origin to destination; (c)
trajectory embedded in semantic geographic context; (d) compressed representation of the
same trajectory with timestamped reference points as indicated by the clock symbols: from
origin, to street g, street B, tram line #5, tram line #3, straight, to destination, clock symbols
with grey sectors represent intervals.

Consider the trajectory illustrated in Figure 1, which captures the movement of a com-
muter from home to work. An array of fixes produced by a tracking system (e.g., GPS)
is listed in Figure 1a and mapped as a trajectory in Figure 1b. Figure 1c depicts the same
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movement embedded in its geographical context. The commuter followed an urban trans-
portation network rather than moving in an unconstrained space.

This example illustrates that the observed movement can be modeled by referring to
elements of the network semantics. The course can be expressed by the streets and tram
tracks it moves along (street g, street B, tram line #5, tram line #3) or by references to the
movement pattern on the network (straight, to destination). The temporal aspect of the
trajectory is captured in the respective timestamps. Figure 1d illustrates this minimalist
representation of the observed movement. The use of semantics for trajectory compression
exploits related research in the field of spatial cognition (which is concerned with the ac-
quisition, organization, utilization, and revision of knowledge about spatial environments)
that aims to design better wayfinding instructions [10, 24, 45].

This paper brings together the reduction of spatial dimensionality of network-
constrained movement, the data aggregation potential of semantic information captured
in the geographic context of movement, and the theory of wayfinding from spatial cogni-
tion. It proposes a novel approach for compressing trajectory data. In detail, the paper
advances geographical information science with the following contributions:

e the concept of semantic trajectory compression (STC), exploiting the semantic em-
bedding of movement for deflating highly redundant trajectory data for an efficient
management of movement data;

e the algorithm STC, integrating and extending methods from navigation research
(map matching, place identification) and spatial cognition (wayfinding, generation
of directions); and

e an evaluation of STC based on a real, example tracking dataset, which has been
recorded by GPS in an urban context, as well as synthetic trajectories that have been
generated to further explore properties of STC.

STC relies on the availability of transport network data for compression. While this
does not cover every type of human movement through space (e.g., hiking in open space
national parks), many of today’s trajectory repositories cover movement of (commercial)
vehicles or pedestrian movement in urban areas (e.g., motorcycle courier trajectories in
London!, schoolbus and truck trajectories in the Athens metropolitan area?, or taxi trajec-
tories in Beijing, as part of the GeoLife GPS data®).

This article is a full paper version of [39], presented as an extended abstract at the poster
session of the 11th International Symposium on Spatial and Temporal Databases, July 8-
10, 2009, Aalborg, Denmark. This full paper presents original work, including a related
work section, an elaborated framework of semantics in networks, a detailed description
of the proposed algorithms, extensive experimental evaluation sections, and a section on
applications of STC trajectories.

2 Related work

Recent work in the areas of database research, spatial cognition, and geographical infor-
mation science is particularly relevant to the development of STC. This section provides an

Thttp: /api.ecourier.co.uk
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overview and synthesis of the following four topics: previous work on path and line simpli-
fication; the notion and use of the semantic embedding of trajectories in their geographical
context; the use of such semantic information for enriching trajectory data; and finally, pre-
vious work on modeling and querying moving objects in moving object databases (MOD).

Path and line simplification As a reaction to ever increasing volumes of spatiotempo-
ral data, recent years have seen initial work on techniques for the compression of such
data. With respect to trajectories, the vast toolbox for line generalization appears to offer
a quick fix for trajectory compression (e.g., [12]). However, Meratnia and de By [30] argue
that conventional spatial line generalization techniques are not suited for spatiotemporal
trajectory compression as they ignore temporal aspects in determining the information to
retain of the trajectories. Consequently, Meratnia and de By propose alternative geometry-
based approaches. Moreover, trajectories are inherently spatiotemporal and compression
algorithms should preserve both their spatial and temporal properties. Modeling time as
a third spatial dimension, Cao et al. [7] and Gudmundsson et al. [19]—presenting an ap-
proximate version of the Douglas-Peucker algorithm—propose path simplification algo-
rithms for three-dimensional spaces (z,y, t). Path-simplification is mostly concerned with
the question “When is a line segment acceptable as an approximation for a subpath?” which
is often tested with some form of tolerance band ¢. Additional to shape-preserving algo-
rithms, Potamias et al. [32] focus on preserving spatiotemporal features inherent in the
trajectory (such as speed or orientation) when subsampling. Both computational geome-
try and database communities aim at compression techniques that still allow queries (e.g.,
where at, when at, nearest neighbor) to be answered once the trajectory has been compressed.
In general, path-simplification is geometry-driven, be it 2D or 3D. Recently, alternative
strategies are discussed that exploit the semantics of trajectories, that is the meaning of a
movement path to the moving actors and its embedding in the underlying geography.

Network bound movement The majority of movement planned or performed by humans
is bound to some form of network, be it an urban street network, a rail network, or even an
air traffic network. In recent years, this a priori knowledge is increasingly exploited for the
handling of large volumes of trajectory data.

Linking GPS fixes to a network requires map matching, the process of matching a po-
sition datum with a map, i.e., identifying the corresponding infrastructure elements for
coordinates in a geographic data set. Mostly, GPS coordinates are matched against street
data but there are indoor map matching algorithms as well (e.g., for robot navigation).
The increasing ubiquity of GPS sensors in vehicles and mobile devices makes it a vivid
research area that aims at improving the accuracy of element identification. The simplest
form of map matching is a point-to-point approach: a position datum is matched against a
vertex of a street network. Point-to-curve algorithms match the estimated position against
edges of the network. In street networks they usually provide a higher accuracy, as vertices
may be comparably widely spread (see [4,46] for an overview of these approaches). More
sophisticated algorithms consider topological information of the network, traveling con-
straints introduced by transportation means, and heading information. These algorithms
outperform the simple approaches as they can detect unlikely and impossible network as-
signments [5, 6,18, 33, 34].

Once trajectories are mapped to a network, the spatial dimensionality is reduced, which
allows for efficient indexing structures for moving objects [27]. For example, Tiesyte and

o] ..
° WWW.JOS1S.01rg


http://www.josis.org

SEMANTIC TRAJECTORY COMPRESSION 7

Jensen [43] exploit a main-memory index structure enabling incremental similarity search
for trajectories of vehicles moving on known routes. The key benefit of such reference
systems lies in their reduced spatial dimensionality (convoluted arcs are reduced to linear
edges), which enable more efficient indexing.

A priori knowledge about objects moving in a network can then further be used for com-
pressing trajectories. For example, Cao and Wolfson [6] model movement along a directed
graph that consists of nodes representing intersections and connecting edges representing
road segments. Instead of storing large amounts of locational fixes, their non-materialized
trajectories model movement as sequences of tuples (on street p;, at location /; along p;, at
time ¢;). Since tuples on the same segment can be merged, non-materialized trajectories
require less storage data than raw trajectory data.

Exploiting the semantics of movement Going one step further beyond just linking move-
ment to a network graph, the embedding of movement in the underlying geography offers
further a priori knowledge exploitable for trajectory compression.

When compressing trajectories beyond pure geometry, activities (e.g., stops) along the
traveled paths need to be preserved. Several algorithmic approaches identify such activi-
ties (called places from here on) within GPS data. Differences in approaches usually stem
from the intended application. There are algorithms for detecting place concepts for hu-
man behavior learning [29], for diary applications [8], or for wayfinding assistance [38].
However, all of them consider places to be spatiotemporal clusters, i.e., accumulations of
position fixes in a certain region of a certain size. Most algorithms rely on explicit values
for the two crucial parameters time and region size (e.g., 10 minutes, 50 square meters) that
define the granularity of the detected places. Some algorithms are parameter-free [38], but
detect places on a finer resolution which then are post-processed and selected according
to their long-term significance. For trajectory compression the prime interest is in detect-
ing significant reference points and not in generating familiarity profiles. STC relies on a
simpler fixed parameter algorithm [3, 23].

The database community initially focused mainly on the definition of spatiotemporal
data types (e.g., moving point and moving region data types [22,47]). Such spatiotemporal
data types allow for queries such as “Find cars that stopped today at point (z,y) at time
(t)”). However, queries referring to the semantic meaning of the movement, such as “Find
cars which stopped today at the gas station at time (¢)” cannot easily be answered [47]
because this requires data beyond the trajectory, namely a matching between point (z, y)
and the geographic feature “the gas station.” For that reason, more recent research builds
on conceptual models of movement, exploring techniques for adding semantic information
to trajectories in order to facilitate trajectory analysis in different application domains [2].

Semantic trajectory enriching requires application domain knowledge, as the user must
specify what spatial features are relevant to the analysis of trajectories [2,42] (e.g., hotels,
touristic places, or stop-over locations of migrating birds). In STC, the context is always
the same and, hence, the characterization of reference points can be done in a much more
deterministic way.

Querying moving objects Since the late nineties moving object databases (MODs) devel-
oped as a special branch of spatiotemporal databases [22]. The key challenge for MODs lies
in keeping track of the constantly changing location of moving objects, balancing positional
inaccuracy and costly updates [21]. This section reviews several dimensions of queries for
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moving objects, allowing a final discussion about querying STC compressed trajectories
(see Section 7).

Location-based queries are a first type of moving object query [1], including nearest-
neighbor queries (NN, “Given a moving object O; and an interval i, which other moving
object O, is closest to Oy during i?”) and range queries (“Given a rectangle R and a time
t, which moving objects O, are within R at t?”). The second type, trajectory queries, refer
to the trajectory as a timestamped polyline, including similarity queries (“Which trajectories
are similar in shape?”) and parameter queries (“Which trajectories move north?”).

MODs model and query past as well as present and near future movement. The latter is es-
pecially challenging as it includes the notion of forecasting and querying future positions.
The MOST data model (moving-objects spatiotemporal) and the corresponding FTL (fu-
ture temporal logic) allow querying present and future states through the use of dynamic
attributes, extended data types that change implicitly over time [22]. MODs consequently
feature various query modes, producing different results as time progresses [40]. Instan-
taneous queries are evaluated once, at time ¢ (“Return the bus stops within 2 km from my
current position”). Continuous queries “travel” with the moving object and are a sequence
of instantaneous queries re-evaluated for all ¢’ > ¢ (“Return the bus stops within 2 km from
my current (and constantly updated) position”). Finally, a persistent query at time ¢ is a
sequence of instantaneous queries on the infinite history starting at ¢ (“Retrieve the objects
whose speed doubles within 10 minutes”).

Most research on MODs considers movement in an unconstrained Euclidean space.
Only recently, the MOD community addressed network-bound movement [21, 31]. Es-
pecially relevant for this paper is the work of [31], as the authors adopt NN, range, and
closest-pair (“Find the hotel-restaurant pair within the smallest driving distance.”) queries
for spatial network databases.

3 Trajectory and network semantics

Most tracking systems capture the movement of individuals as trajectories. They store lists
of timestamped position samples, so-called fixes, in the form of tuples (z,y,t). In its most
simple form a trajectory is a polygonal line connecting the fixes of a moving individual [20].
Formally, the trajectory 7" of a moving object O over time interval [t;, ¢;] is described by

TO(Zaj) = <($i7yi7 tl)a (xi+layi+17ti+1)a ey (xjayja tj)>

To is linear on each interval [t;, t;11].

The example trajectory in Figure 1 shows an object moving from origin ori to destination
dest, over a temporal interval from 00:00 to 59:40. Figure 1a lists the fixes of the trajectory,
Figure 1b the respective trajectory mapped in two-dimensional space. Note that only a
subset of all fixes are listed in Figure 1a.

A map is a semantically annotated network of edges and nodes. A map represents an
urban transportation network, featuring streets, bus, tram, and train lines (see Figure 1c).
A mabp has the following properties:

e Vertices are unambiguously defined, either by IDs or by (z, y) coordinate tuples.
e Edges have labels (street name; or bus, tram, train line, e.g., B or 3 in Figure 1c).
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e Bus, tram, and train lines can (but need not) be superimposed upon the street net-
work. Vertices of bus, tram, and train lines are stops and stations; these may be
labeled with the stops’ names.

e The labeling of edges and vertices can extend several levels of granularity. An edge
may at the same time have a local street name (e.g., “Ostertorsteinweg”) and be part
of a national highway system (e.g., “A7”).

Formally, a map is described by:
M = (Vr, Er,Va, Eg)

Vr is a set of topological vertices. These are the intersections of a transport network that
define the links between the other topological entities. Er is the set of topological edges
between the elements of V. Most path planning algorithms work on the elements of V7
and E7, which is termed the network graph. This is also the graph compression and decom-
pression of trajectories mostly work on. For some operations, though, these processes need
to use the geometry of the network configuration. This geometry is described by Vi, Eg,
the sets of geometric vertices and edges. With these sets the actual layout of spatial entities
in the environment is described. Map matching works on the geometric representation of
streets (although sophisticated approaches use the topological representation in parallel),
and turning angles, i.e., angles between pairs of streets, are determined on this level. For
each topological edge there is a corresponding sequence of geometric edges. Topology
abstracts from geometry to connectedness. Figure 2 illustrates this. In Figure 2, the topo-
logical edge er172, which connects the topological vertices vr; and vrs, abstracts from the
sequence of five geometric edges e to e that describe the course between the geometric
vertices vg1 and vg2. Note that topological vertices always coincide with geometric vertices
(the former are a subset of the latter), but topological edges do not need to correspond to
geometric edges.

Figure 2: Illustration of how topology abstracts from geometry. The topological edge er172
abstracts from the five geometric edges eg1 to egs.

The advantage of a network lies in reducing the dimensionality of a two-dimensional
movement space. An object moving in a network can concisely be positioned along edges
and at vertices through timestamping. Given a semantically annotated map, edges and
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vertices can be aggregated according to shared labels. Often, several consecutive edges
represent the same street and, thus, share the same label. Tram and bus lines may even
extend over large sections of a transport network. In short, STC exploits the high-level
reference system that comes with the semantic annotation of the transportation network.

Taking this perspective, streets and tram, bus, or train lines can be viewed as mobility
channels that moving objects hop on, ride for a while, and hop off again to catch another
channel that brings them closer to their destination. Only small quantities of information
need to be stored for adequately representing the movement of an object riding such chan-
nels. With respect to data compression, this mobility channel metaphor illustrates the po-
tential for trimming large amounts of redundant fixes. All that needs to be stored to get an
accurate approximation of individuals driving, cycling, or walking through a network are
the location and hop-on and hop-off times where an object enters or leaves such a channel
(e.g., street intersections or bus stops).

Finally, reference points structure trajectories. These reference points are the spatiotem-
poral location of where the relevant actions describing the movement of an object in a
network happen. Reference points are structurally modeled as points on the network anno-
tated with time intervals. The intervals conflate to a time point when changing the mobility
channel can be considered instantaneous (e.g., turning from one street into another). STC
considers the following types of reference points, which suffice to describe movement in a
network:

e Origin and destination of a trajectory clearly are reference points; they define the
spatiotemporal boundaries of the represented movement behavior.

e Streetintersections and public transport stops are taken as reference points since here
channels may be changed.

e Stops within edges constitute reference points. For instance, these stops may occur
when a traveler gets stuck in traffic or decides to interrupt the journey to enter a shop.
Such stops are identified as places within the trajectory and are subsequently treated
as reference points. Their identification is further discussed in the next section.

To summarize, a reference point is a point on the network with an associated time interval
whose position corresponds to one of the following semantic elements: origin, destination,
street intersection, public transport stop, place.

4 Semantic trajectory compression

This section gives a detailed description of the semantic trajectory compression (STC) ap-
proach. In the following, the algorithms for compression (Section 4.1) and decompression
(Section 4.2) of trajectories are explained. Section 5 then presents an experimental evalua-
tion of both steps.

4.1 Compression

STC is based on the discussion of network semantics in Section 3. Beyond addressing anno-
tated network entities, STC follows a semantic approach in how it interprets the trajectory
and utilizes this interpretation for compression. STC transforms the geometry of a tra-
jectory into a semantic representation that is inspired by mechanisms employed in giving
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route directions as they are identified in research on human spatial cognition [10, 24, 45].
Trajectories are described not just through geometry, but by qualitative descriptions of ac-
tions along the network. This way, STC can identify and address structures in the envi-
ronment that are only graspable if considering how a human perceives it while moving
through it. These structures then allow for reducing trajectory descriptions to their seman-
tically relevant cores. Broadly, STC is based on three steps (see Figure 3):

1. In a pre-processing step, identify the relevant reference points along the trajectory.

2. For each reference point, determine all possible descriptions of how movement con-
tinues from here.

3. Based on the descriptions, combine consecutive reference points into sequences of ref-
erence points. These sequences are termed chunks [24,26]. The compressed trajectory
consists of sequences of such chunks.

Identification of reference points Next to its spatial layout, the temporal order of its
reference points is the most important property of a trajectory. However, not every single
datum is important to describe the semantics of network movement. Time and location of
changing mobility channels and the places (stops along the way) are sufficient to capture
these semantics. In a pre-processing step, map matching identifies the positions of origin,
destination, possible channel changes, and places on the network. The spatial part of a
mapped trajectory corresponds to a path through the network; all intersections are vertices
of Vr (see Figure 3, center).

Places are detected by spatiotemporal clustering, similar to the basic accumulative ap-
proach described in [23]. A place is detected if the position lies for a defined time in a
defined area (e.g., the signal is for at least ten minutes within an area of 50 meters). The
place itself is described by the centroid of all measurements, the spatial center of the fixes
assigned to the cluster. This centroid is mapped to the closest network entity, which may be
an edge or a vertex. It is treated as a single, outstanding reference point. The time interval
for the place is computed by the duration of the cluster. Places are special reference points
in that, here, the duration of the cluster is significantly longer than for simple channel-
changing reference points or stops at traffic lights. Places mark semantically meaningful
stops along the way (e.g., for entering buildings), introducing to a topological map new
vertices to represent a place’s location. Figure 4 illustrates this: Figure 4a shows a cluster
of positioning signals within temporal and spatial boundaries. In Figure 4b the centroid
¢ is assigned to the closest network entity (faded-out star mapped on the street segment),
introducing a new vertex on the edge the centroid is mapped to.

Channel-changing reference points are annotated with a time point. This point (the
timestamp) is interpolated from the timestamps of the fix before and the fix after the ref-
erence point. Figure 4c and d illustrate the interpolation of a channel-changing reference
point: the reference point ¢, is computed from the fixes ¢; and ¢, which are before (¢1),
respectively after (t2) the channel change.

A simple point-to-point map matching has a complexity of O(nlogn) if using efficient
lookup data structures, such as R-trees or its variants, for finding the points in (Vg E¢)
that match with a trajectory fix (note that the lookup data structure has to be built only
once for a geographic area in a preprocessing step). Identification of reference points is of
linear complexity, and can be integrated into the map-matching process. Interpolation of
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Figure 4: Handling of time. (a) and (b) illustrate the mapping of place centroids against the
network infrastructure. (c) and (d) illustrate the interpolation of timestamps for reference
points.

timestamps as shown in Figure 4c, d requires to iterate the matched trajectory once, as does
place identification as proposed by [23], for example.

Description of reference points For each reference point, unambiguous descriptions of
how to proceed from here are generated. The semantics of the underlying network de-
termine these descriptions; this makes use of work on cognitively ergonomic route direc-
tions [10,35]. Two types of descriptions are used for capturing the motion continuation at a
reference point (see Figure 3 center): egocentric direction relation and network labels. Ego-
centric direction relations express changes of directions in terms of qualitative relations,
such as straight, left, or right. The semantics of these relations depend on the underlying
qualitative direction model (STC employs the model of [25]). Labels of network elements
identify these elements; changes in the labels indicate movement onto the next element. For
example, moving from the third (1.6, 1.9) to the fourth (1.72, 2.5) node in Figure 3 center
can be described as straight, B, or tram #5.

In route directions, several consecutive instructions (describing single intersections as
exemplified above) can be subsumed into a single, higher-level instruction (e.g., “turn left
at the third intersection” instead of “straight, straight, left”; cf. [26]). For their original pur-
pose, these higher-level instructions need to be easily understandable for human wayfind-
ers. Accordingly, the subsumption process needs to make sure that references within and
between instructions are unambiguous and comprehensible. This may leave some redun-
dant information in the route descriptions. For example, instructing travelers to go straight
for the next 47 intersections imposes a cognitive burden on them that is bound to lead to
navigation errors and, thus, this single instruction needs to be broken down to several,
more manageable instructions. In STC, these references are not required and, thus, redun-
dancy can be removed (the STC algorithm has no problem with counting to 47). Instead
of trying to ease the task of finding a way through an environment, the descriptions are
optimized for the purpose of compression.

Compression of reference points Spatial chunking exploits the spatial structure of an
environment. It combines descriptions for several consecutive segments of a path into a
single higher-level description. Spatial chunking was discussed in depth in [24]; there, a

JOSIS, Number 4 (2012), pp. 3-30



14 RICHTER, SCHMID, LAUBE

formal framework was defined along with an exhaustive set of chunking principles. The
applicability of a chunking principle depends on the type of description at hand.

The spatial part of trajectories can be compressed using spatial chunking. The descrip-
tions of movement between reference points used in STC (egocentric directions and net-
work labels) require numerical chunking as the chunking principle to use. In numerical
chunking chunks combine consecutive reference points as long as the same description is
used for them (e.g., “tram line #3” chunk in Figure 3). Put differently, reference points are
joined until there is a change in description. For example, as long as a trajectory follows
edges with identical labels, all these edges are combined into a single chunk by this label.
As soon as the label changes, a new chunk is generated. The aim in compression is to create
the minimal number of sequences that describe the spatial footprint of a complete trajec-
tory, i.e., the minimal number of chunks. As a consequence, most chunks can be expected
to cover a considerable part of the trajectory. Generating this sequence is realized as an
optimization problem.

Chunking results in a semantically compact description of a trajectory. The chunks
reflect parts of the trajectory where no semantic changes occur, i.e., where an individual
moved in a coherent part of the network. The crucial information that needs to be stored in
the compressed trajectory is where and when a chunk starts and ends. Furthermore, any sub-
sequent restoration of the path exploits the description the chunk is based on. Each chunk
is stored as a tuple (start,description). Element start is a vertex of Vi; with a time interval,
i.e., a (z,y,t) tuple. Element description is stored as an ID value that is used to identify
elements of the network in a lookup table (e.g., a hash table). Since every chunk ends at the
start-element of its successor, there is no need to store an end-element in a chunk, unless for
the last chunk, which also contains the timestamped position of the destination, i.e., where
the described movement has stopped. Note that this is a lossy compression with respect
to time, since only for those reference points explicitly stored in the compressed trajectory
their time interval is retained. It is also lossy in geometry, as it matches individual fixes to
vertices and edges of the network.

Algorithm 1 summarizes steps 2 and 3 of the semantic trajectory compression process.
Function get_all_actions returns all possible descriptions for a single reference point,
function chunk finds the optimal sequence of chunks for the list of reference points (cf.
[35]). Function get_all_actions performs two operations for each reference point. It
returns the set of labels of the outgoing edge (the network labels) and it calculates the
egocentric direction relation between incoming and outgoing edge, i.e., an angle that is
converted to a relation symbol. The union of the label set and the relation symbol represents
all possible descriptions for the reference point at hand.

As discussed in [35], computational complexity of optimization is dominated by the
number of reference points n. Richter [35] introduced two different optimization methods:
local and global optimization. Global optimization is guaranteed to find the optimum,
but has exponential complexity of O(2"~!). Local optimization has quadratic complexity,
O(n?). While it is not guaranteed to find the optimal solution, extensive tests showed that
this happens less than 1% of the time, and that in these cases the sub-optimal solution is
only marginally longer [35]. Thus, the function chunk is implemented using local opti-
mization, with computational complexity of O(n?). As this is the dominating function in
the compression algorithm, this is also the overall complexity of STC.
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Algorithm 1: The semantic trajectory compression (STC) algorithm.

Data:
reference points: a sequence of reference points along the trajectory;
map: the spatial data semantic compression is performed against.
Result:
compressed: a sequence of chunks, i.e., the compressed trajectory.
Set compressed + &;
Set actionlist + &;
while reference points do
Set actions < get_all_actions(head(reference points), map);
Set actionlist < append(actionlist, actions);
Set reference points + tail(reference points);
end
Set compressed « chunk(actionlist);
return compressed.

O 0 NS U R W N =

4.2 Decompression

In decompression, the aim is to reconstruct movement through an environment. As dis-
cussed before, in the chosen semantic approach, decompression does not restore the origi-
nal trajectory, but rather the reference points that define this movement (see Figure 3 right).
The reconstructed trajectory contains all information on changes of direction as well as
places along the way. For those reference points that are reconstructed in decompression,
their timestamp is calculated based on an assumed linear movement behavior between
start and end point of a chunk. This reconstructed information is sufficient for most tasks,
specifically navigation support and most query-by-location services.

In a nutshell, the decompression algorithm iterates through the sequence of chunks
stored in the compressed trajectory. It returns a sequence of vertices of V; that are a geo-
metric representation of the traveled path through the network. For each of these vertices,
it calculates a timestamp. In more detail, beginning with the start vertex of a chunk the
algorithm adds edges of E¢ to the reconstructed trajectory until the start vertex of the next
chunk is reached. To this end, it uses different strategies to determine which edge is to be
added; these strategies depend on the description used for chunking.

Chunks based on the egocentric direction relation straight are decompressed by adding
edges that head in the direction straight as seen from the previous edge. The direction
relations are defined in a qualitative direction model that maps angle deviations between
two edges to a direction relation [25]. At the current vertex it is checked which outgoing
edges are in relation straight to the incoming edge. Since compression generates unam-
biguous descriptions for egocentric directions, there will always be only one such edge. In
principle, the same approach is taken for the other kinds of descriptions. However, there
might be more than one edge at a vertex that adheres to the same concept (identical labels,
e.g., change from street g to street B in Figure 3). Therefore, a recursive function tries all
candidates, i.e., searches a path from the current vertex to the final vertex in which all ver-
tices are described by the used concept. At each vertex, only the edges that might fit at all
are tested, i.e., the function excludes the incoming edge (to avoid going back) and all edges
that cannot be described by the concept at hand. Thus, even though the recursive function
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has exponential complexity in theory, in practice the branching factor hardly ever exceeds
2. Figure 5 illustrates decompression based on the first two reference points stored in the
compressed trajectory of Figure 3.

Trajectory: Candidates:
((2.6 0.9 00:00) (1.7 1.0 03:43) "g") 1: ((2.6 0.9) (2.1 1.0) "g")
((1.7 1.0 03:43) (1.6 1.9 16:43) "B") 2: ((2.6 0.9) (2.7 0.8) "g") — a
a) b)
\ \

| |

| |
¢ ¢
1: ((2.6 0.9) (2.1 1.0) (1.7 1.0) "g") — B ((2.6 0.9) (2.1 1.0) (1.7 1.0) "g")
2: ((2.6 0.9) (2.7 0.8) (3.2 0.8) "g")
c) d)

Figure 5: Part of the compressed trajectory of Figure 3 (a). Decompression starts at origin
ori and explores both directions along street g, spanning two alternatives 1 and 2 (b). Al-
ternative 2 meets street a in the first decompression step (b), alternative 1 meets street B in
the second step (c). According to the sequence of stored reference points (see a), alternative
1 is the correct decompression and is, thus, maintained (d). Note that times are not given
in (b), (c), (d) for readability reasons.

Algorithm 2 summarizes the decompression. Decompression needs as input both the
compressed trajectory and the map against which compression has been performed.

5 Evaluation

STC has been evaluated using real tracking data and simulated movement data. Both illus-
trate the power of the approach for reducing the information that needs to be stored.

o] ..
° WWW.JOS1S.01rg


http://www.josis.org

SEMANTIC TRAJECTORY COMPRESSION 17

Algorithm 2: The decompression algorithm.

Data:

compressed: the compressed trajectory (the result of Algorithm 1), represented as a
sequence of chunks;

map: the spatial data compression has been performed against.

Result:

path: a sequence of vertices v € V; representing the path traveled through the
network.

1 Set path + o;

2 while compressed do

3 Set currentchunk +— head(compressed);

4 Set chunkend «+ segmentend(currentchunk);

5 Set current + segmentstart(currentchunk);

6 Set partpath + o;

7 Set added < true;

8 while added and —(contains(partpath, chunkend)) do
9 Set candidates < getcandidates(current,map);
10 if candidates then

11 Set partpath +— probeallcandidates(candidates, map);

/* probeallcandidates is a function that recursively tries all possible paths
to proceed until chunkend is reached. For description “straight” there is only
one element in candidates. */

12 end

13 else

14 | Setadded « false;

15 end

16 end

17 if -(contains(partpath, chunkend)) then
18 | Set partpath «+ &;

19 end

20 Set path +— append(path, partpath);

21 Set compressed < tail(compressed);

22 end
23 return path.

5.1 Real tracking data

18 everyday trajectories reflecting movement between regularly visited places of four per-
sons have been recorded in the city of Bremen with a Garmin eTrex GPS device (sampling
rate of 1 fix in 10 seconds, positional accuracy varies between 7 to 110 meters; the latter
likely indicating positioning errors). The path lengths range from 980 to 7582 meters. Dif-
ferent transport modalities were used; the predominant one was traveling by bicycle.

Due to limitations of the used GPS tracking procedure (the fluctuant positional accu-
racy) and the subsequent difficulties in correct link identification, the trajectory data had
to be preprocessed. The STC compression algorithm uses a trajectory matched to network
data as input; in the evaluation, manual correction of wrong matches is sufficient to demon-
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Figure 6: The map shows a part of Bremen where tests have been performed in. As an
example, one of the 18 real world trajectories is shown (trajectory #9 of Table 2). The Figure
shows in (a) the original trajectory (bold line). The dots represent the fixes mapped to the
street network; and in (b) the dots represent the reference points stored in the compressed
trajectory.

strate the compression approach itself. In applications dealing with large data sets or real-
time map matching (e.g., car navigation systems), the cleaning and map-matching of the
data would need to be performed by more sophisticated algorithms as they have been
presented in Section 2.

The trajectories were matched onto the map (Ve;, E¢) using a simple point-to-point map
matcher. This kind of matcher maps a GPS fix to the closest geometric or topological control
point of the curve representing the street [46]. Simple point-to-point matchers are prone to
matching errors as they assign the fix to the closest control point in its vicinity without any
other plausibility check, such as topological constraint checking. Accordingly, the matching
process produced some wrongly assigned fixes. Obviously wrong matches were corrected
manually and additional synthetic fixes were added where link identification ambiguities
occurred. This situation can occur when the satellite reception of the GPS device is limited
and fixes with high positional inaccuracy are obtained. With a series of highly inaccurate
fixes is it not possible to determine the exact traveled path; the implementation of recon-
struction heuristics is required. TrackR [36], a trajectory visualization software package,
was used to this end. Linear spatiotemporal interpolation determined the synthetic fixes.
This assumes constant velocity and straight movement along edges. It did not introduce
or alter any information beyond resolving matching problems, an issue not in the focus of
this paper.

STC has been tested on all recorded trajectories. Figure 6 shows an example. The trajec-
tory is 4336m long and comprises 86 fixes; the corresponding path in the map has 49 nodes
(elements of V) and 102 coordinates (elements of V). Performing STC yields the 9 items
of Table 1. The table lists the descriptions of each item in plain text to better illustrate refer-
ences of semantically meaningful elements in the compressed trajectory. In actual storage
of the compressed trajectories, these items should be encoded with unique IDs connected
to a lookup table in order to make the byte size of a stored element independent of the
length of the attached street name. Decompressing the compressed trajectory restores the
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path geometry of the trajectory as it had been mapped to (V, Eg). It also keeps those
timestamps that are explicitly stored in the compressed trajectory. Despite some minor
differences in the restored coordinates (discussed below), the visual appearance of the de-
compressed trajectory is indistinguishable from the trajectory shown in Figure 6a and is,
therefore, not shown.

((3490410 5882041 00:00) “straight”)

((3490057 5882110 01:00) “Stader Strasse”)

((3490187 5882384 01:51) “Bismarckstrasse”)

((3488862 5882814 05:43) ”Graf-Moltke-Strasse”)

((3488779 5883229 07:04) “Hollerallee”)

((3488349 5883565 08:35) ” Am Stern”)

((3488305 5883598 08:47) “Hollerallee”)

((3487580 5884254 11:31) “Findorffallee”)

((3487583 5884256 11:32) “straight” (3487462 5884418 12:05))

Table 1: An STC compressed trajectory.

Table 2 summarizes the results of compressing the 18 real world trajectories. The table
lists the number of fixes of the original trajectory, nodes of V7 after the mapping to the
network, and items of the compressed trajectory (corresponding to those listed in Table 1).
It also states two compression rates: The first compression rate (“compr(item)”) looks at
the number of items of the compressed trajectory (9 for the example of Table 1). The second
compression rate (“compr(elem)”) acknowledges that each item comprises two elements
(a timestamped coordinate and a description)—except for the last item which addition-
ally contains the timestamped coordinate of the destination. Thus, the 9 items of Table 1
correspond to 19 elements. The compression rates state the amount of data reduction, for
example, a rate of 89.53 means that 89.53% less data needs to be stored compared to the
number of fixes of the original trajectory.

The table also compares storage space of trajectory data. It states the file size in bytes
for the original data of the mapped trajectories, the file size after compressing these files us-
ing zip-compression, and the file size of storing STC-compressed trajectories (both uncom-
pressed and zip-compressed). These files are text files that simply store one node in each
line for the mapped trajectories, respectively one item each line for the STC-compressed
trajectories. The comparison with zip-compression allows for evaluating the performance
of STC against a (general) lossless compression mechanism.

5.2 Synthetic trajectories

Alongside the real tracking data, the performance of STC was tested using synthetic trajec-
tories from simulated movement. Using the same geographical data set that the real track-
ing data has been matched to, random paths were calculated on the combined network of
streets and tracks. To get paths that are more plausible with respect to human movement
through a network space, the approach to simplest paths [13] was used as a path search
heuristic. This results in the spatial part of a trajectory; note that this already corresponds
to a trajectory mapped to the network, no actual “unmapped” trajectory was generated.
The temporal part was simulated by assuming movement with constant speed along the

JOSIS, Number 4 (2012), pp. 3-30



20 RICHTER, SCHMID, LAUBE

trajectory elements file size
compr compr Zip zip
#fixes #nodes fitems (item) (elem) traj.  traj. STC STC
1 77 20 6 9221 83.12 | 7183 1388 222 294
2 81 54 19 76.54  51.85 | 10222 1905 807 464
3 95 58 10 8947 7789 | 8611 1671 440 377
4 82 45 6 9268 8415 | 6415 1302 285 316
5 152 103 24 84.21 67.76 | 15261 2834 945 515
6 68 41 5 9265 8382 | 7180 1421 284 321
7 103 71 12 88.35 75.73 | 9588 1892 401 365
8 125 74 20  84.00  67.20 | 12920 2365 694 438
9 86 49 9 8953 7790 | 6102 1274 339 332
10 118 80 21 8220 6356 | 12280 2310 823 479
11 20 13 5 7500 4500 | 1740 544 205 314
12 42 42 8 8095 5952 | 6283 1266 342 352
13 41 30 11 73.17 4390 | 4534 1035 572 419
14 83 46 13 8434 6747 | 7059 1470 444 424
15 57 51 6 8947 7719 | 6814 1335 228 302
16 56 29 10 8214 6250 | 4120 930 373 339
17 90 43 10  88.89 76.67 | 5555 1190 401 363
18 89 65 10  88.76 7640 | 9139 1771 441 378

Table 2: Results of the 18 real world trajectories. compr(item) states the compression rate
when comparing items of the compressed trajectory; compr(elem) the compression rate for
the number of stored elements. File size is given in bytes; “traj.” and “zip traj.” state
file sizes for the (zipped) mapped trajectories, “STC” and “zip STC” for the (zipped) STC
compressed trajectories.

path. The speed was randomly set to values between 6 and 142*. A sampling rate of 1 fix
every 5 seconds was used. Using the speed and sampling rate, the number of fixes an ac-
tual trajectory along the previously determined path would have was calculated. 1000 such
trajectories were created. They vary in length between 1 and 497 fixes (mean: 139 fixes).
Figure 7 illustrates the results of their STC compression. The 1000 trajectories are grouped
into ten length classes (shortest 10%, 10% to 20%, ...). As for the real tracking data, the
number of nodes represents the number of elements of V7, i.e., the number of topological
nodes that describe the movement through the network after mapping the trajectory to the
network.

5.3 Results

STC achieves a high compression rate. Looking at the example of Figure 6 again, instead
of storing 86 fixes, only 9 items need to be stored. This corresponds to a compression rate
of 89.53%. Considering the number of elements the compression rate is still 77.90%. As can
be seen in Table 2, similar results are achieved for all real world trajectories (mean com-
pression rate (items): 85.25%, standard deviation: 6.02; mean compression rate (elements):
68.98%, st.d.: 12.61). These findings are confirmed by the results of the synthetic trajectories
test. STC significantly decreases the amount of data to be stored here as well. Comparing
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Figure 7: Results for synthetic trajectories. Shown are the number of fixes in the original
trajectory, nodes in the corresponding path, items in the compressed trajectory. Trajectories
have been divided into ten length classes according to the number of fixes (lowest 10%,
10-20%, ...). The box-whisker plot displays the minimum and maximum of a group (the T-
ends of the lines), the interquartile range (the boxes), and the mean number (the horizontal
lines in the boxes).

the number of items in the compressed trajectories to the number of fixes, on average the
compression rate for the first group is 77.9%, for the last group 91.4%. Accounting for the
fact that two elements (a start reference point and a description) have to be stored in each
item, the rates change to 51.8% and 82.4%, respectively. This is still a large reduction.

Matching trajectories to the network already would allow for some compression of the
data. In this case only the nodes of the corresponding graph that the matched trajectory
passes through need to be stored, annotated with a time stamp of when they are passed.
Such an approach, while being simplistic in its implementation, provides an upper bound
for the compression rate of the approach by Cao and Wolfson [6]. Figure 7 also shows the
compression rates achieved with this method. They range from an average of 29.50% for
the first group to 61.44% for the last group. This compression is the result of the prepro-
cessing step of STC. Performing chunking on the network path (represented by the nodes)
by exploiting the semantic information attached to the network’s elements significantly in-
creases these compression rates. STC compression is between 20% to 30% higher compared
to simple node compression for every group (average 26.76%).

It can also be observed that with increasing number of fixes the compression rate in-
creases. The longer the trajectories, the better the compression. For very short trajectories
(those with 1 or 2 fixes only), STC actually creates overhead information as 1 fix needs to

JOSIS, Number 4 (2012), pp. 3-30



22 RICHTER, SCHMID, LAUBE

be represented using 3 elements (start and end reference point, description). However, the
number of STC items increases much slower than the number of fixes. The average number
of fixes in the first group is 24.67, in the last group 306.31 (factor 12). The average number
of items in the first group is 5.45, for the last group it is 26.43 (factor 4.8).

All reconstructed reference points are annotated with estimated timestamps assuming
constant speed within a chunk. In some cases decompression returns a path that partially
differs from the original path (the trajectory’s realization in Vi, E¢). For the example of
Figure 6, the reconstructed path has 2 coordinates more than the original path. The under-
lying geographic data set has individual representations of different lanes for some streets,
resulting in different geometric representations. The decompression algorithm may choose
to navigate roundabouts clockwise or counterclockwise. These effects may cause differ-
ences in the geometric reconstruction of trajectories (see further discussion in Section 8). In
the example the reconstruction of movement through the roundabout explains the geomet-
ric differences.

The results reported so far compare the number of elements that need to be stored for
trajectories. When looking at file size, i.e., the actual space trajectories take up on storage
media, STC also performs well. Zip compressing trajectories certainly results in a signif-
icant reduction of storage space—on average a reduction of 80.65% for the 18 trajectories
of Table 2. However, STC-compressing these trajectories results in an average reduction of
96.04%. Reducing trajectories to their semantic core, thus, clearly provides a more powerful
compression than a simple (syntactic) reduction of the raw data. In fact, it is such a good
compression that zip-compressing the STC-compressed trajectories on average results in
an increase of storage space again (negative average reduction of —9.07%).

6 Discussion

There are four main insights that can be drawn from the evaluation: 1) STC compresses
trajectories to only a fraction of raw data volumes; 2) it also drastically reduces the amount
of data to be stored compared to a trajectory’s network representation; 3) for purposeful
movement through a transport network, with increasing length of trajectories, compression
increases; the longer a trajectory is, the better is the compression rate; 4) STC reconstructs
compressed trajectories featuring all essential information. Highway travel may further
illustrate the power of STC. The only information that needs to be stored is the position of
ramps on and off the highway and the highway’s name (e.g., a trip on the German interstate
A7 from Hannover to Ulm of about 550km, or 6 hours, ideally could be stored using only
two information items).

Increasing compression rates with increasing length of trajectories can be explained
with the number of direction changes along a path, i.e., those turns at an intersection that
are not classified as “straight.” For the tested trajectories, the ratio between the number
of nodes in the path corresponding to the trajectory and the number of direction changes
is essentially constant over all groups of Figure 7 (between 3.4 and 3.89, no monotone in-
crease). Even though with an increasing number of nodes (longer trajectories) the options
for turning somewhere increase, longer trajectories representing purposeful movement in
a network contain more and longer segments that are chunkable. This can be attributed to
the common three-part division of traveling in urban networks [10]: 1) getting from origin
on to the system of main streets; 2) traveling along main streets (where only few direction
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changes occur); 3) near the end, getting off the main streets again to move to the destina-
tion. Due to the chosen path search heuristics in the evaluation, this pattern occurs in the
data despite it being random paths.

As explained above, ambiguity may arise in decompressing trajectories. Since label
compression does not include heading information, in some situations there may be more
than one possible path from start position to end position of a chunk. In such situations,
decompression chooses the first valid path it finds. This is due to the fact that STC so far
ignores movement modality and associated traffic regulations. Means to account for these
are part of future work.

In general, there is a direct relationship between minimizing the stored data in com-
pression and an increased effort in restoring the trajectory again. Since only the essential
reference points for describing motion in the network are stored, intermediate edges need
to be recalculated, which involves resolving possible ambiguities. At the other end of this
spectrum every edge that is traversed by the path could be stored, which would take up
more space, but would only require an ID lookup. It is also possible to extend the data
stored in the tuple representing the chunk. Along with the description element (e.g., street
name) heading information could be captured; with every change of heading a new chunk
would be created. Such a compression would combine at least some reference points and,
thus, would be a more compact representation than storing all edge IDs. Decompression
then could select that edge at a vertex that is labeled by the used description and heads in
the correct direction. However, this paper aims at demonstrating the maximally possible
data reduction; a detailed evaluation of the relation between data compression and decom-
pression effort is part of future work. Something to note in this context is that even though
decompression has exponential run time in theory, in practical terms it runs faster than
compression. Due to the low branching factor of the network (street networks are to a most
part planar graphs) run time is nearly linear. This is desirable behavior, since in most ap-
plications, a trajectory is compressed only once for data storage but may be decompressed
several times for further computation.

A specific property of the STC approach is the dependency on having available the
same data set for decompression as was used for compression. In contrast to image com-
pression procedures, for example, that rely on a “lightweight” compression algorithm, STC
relies on the “heavyweight” input of the (same) semantic data. This is no problem within a
single application that either runs on a single machine or is client-server based. And with
today’s advances in ubiquitously available spatial data accessible from the web, sharing
compressed trajectories across applications and people becomes increasingly easier. It can
be expected that in near future (quasi-)standard spatial data emerges that is used in many
applications. But even when using a different data set for decompression than for com-
pression, the traveled path through the network can likely be reconstructed. Compression
is based on semantic information, such as street names or tram lines, and abstracts geom-
etry to a qualitative level by using direction relations that correspond to angle intervals.
If it is possible to anchor the compressed trajectory in the new data set, i.e., to determine
position of origin and initial heading, recovery of the trajectory will be possible using the
same methods as described above. Only if the data set for decompression contains less
information than the compression set, i.e., if specific layers of information that were used
in compression are missing or are incomplete, reconstruction fails. Still, if at least parts of
the path can be recovered, it may be possible to use heuristics based on human wayfinding
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behavior (e.g., principles identified by [17]) for determining the most probable trajectory to
fill in the gaps.

Another limitation is the dependency on map-matching as a pre-processing step. Map
matching algorithms always try to converge toward infrastructural elements. However,
humans are not tied to moving exactly along officially mapped streets, they may take short-
cuts, like walking straight across a lawn instead of walking around it. A map matching al-
gorithm will try to match the fixes to the paths surrounding the lawn. This introduces some
error compared to the original movement. Thus, the quality of STC relies on the quality of
the applied map matching. Finally, one may argue that reconstructing a trajectory with
only interpolated timestamps and not the original trajectory with all its timestamps does
not really mirror a full compression-decompression process. However, as previously ar-
gued, the reconstructed trajectory represents the semantically meaningful aspects of the
movement behavior. Many fixes, on the other hand, can be expected to be just noise in the
movement description that originate from inaccurate localization.

7 Applications of STC trajectories

A major advantage of STC is that the compressed trajectories are human-readable. STC
not only compresses streams of fixes, but it also transforms raw data into a semantically
enriched summary of the movement episodes, not unlike a narrative summary. This opens
opportunities for applying STC in a navigation context; trajectories compressed with STC
can be used for personalizing mapping and navigation services. For example, personalized
navigation assistance as proposed in [37] requires a user model that consists of previously
traveled paths and visited places. As STC-trajectories consist of these elements, personal-
ized assistance can be directly generated from them.

Thinking this further, the semantic representation of trajectories is ideally suited to com-
pare movement within and between different people or objects. For example, checking
movement of a specific person in a network for consistency becomes easy, as any major
deviation would emerge as differences in the STC compressed representation, while minor
(irrelevant) deviations would be filtered out in the compression and, accordingly, would
not need to be dealt with. Such comparisons have their applications in areas such as navi-
gation services (as discussed above), logistics, or surveillance. Furthermore, it also becomes
easily possible to check movement behavior of different people and objects for similarities,
for example, to identify people that have similar travel patterns. This has practical applica-
tion in areas such as intelligent transport (e.g., identifying opportunities for ride sharing),
spatial profile matching, or route optimization in logistics.

Such applications will require querying STC trajectories. Given that STC compresses
trajectory data that represents movement in a network environment, there are some differ-
ences to the approaches discussed in Section 2.

Trajectory queries STC is all about retaining the relevant semantic information of tra-
jectories while reducing redundancies. Since the network elements that trajectories move
along are restored in decompression, any queries related to a trajectory’s shape will re-
sult in the same results as if querying the original map-matched trajectory. This holds,
for example, for queries, such as: “Where did object = stop?” “Which trajectories travel
in a north-south direction?” “Did object 2 move along network element y?” The first two
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queries can even be answered on the compressed trajectory without a need to decompress
again. Also, simple similarity queries can be answered directly using STC trajectories (in-
cluding queries, such as “Which other objects follow a similar path to this one?” or “What
other objects pass through this network element?”). STC compresses a trajectory into a se-
quence representation; therefore, similarity techniques based on quantifying the difference
between sequences (e.g., edit distance) present a natural fit for similarity queries on STC
data [9,11].

Network queries Papadias et al. [31] reformulated queries that are typically run on mov-
ing object databases to account for movement in networks. These queries are (k) nearest
neighbor, range, and closest-pair queries. All the queries use network distance instead of
Euclidean distance. In order to answer these queries, STC trajectories need to be decom-
pressed, except if a query is run using any of the start or end points of any of the chunks as
query point g.

STC trajectories will perform well for any queries that do not require high precision.
Queries on STC trajectories are precise to at least the level of edges (as edges are the basic
elements of the compression algorithm). Queries, such as “When did object = pass edge
y?” will deliver useful results since the “objects” moving along the edges usually do not
have random speed or acceleration/deceleration patterns, but exhibit consistent patterns.
Trains and trams normally move with similar speed patterns, and likewise cars are bound
by traffic regulations. However, the STC approach fails to pick up extreme behavior. For
example, if an object accelerates and decelerates rapidly between start and end points of
chunks, this movement behavior would be impossible to represent and query in a STC
trajectory.

Network queries lead to correct results on the level of granularity of network distance
from an edge. However, distance from edge is a more complex operation, with a less clear
semantics, than distance from point. Thus, usually these queries will be run using an inter-
polated point ¢; on that edge. Interpolated fixes do not need to match with fixes in the
original, matched trajectory; this may result in deviations between query results on the
original trajectory and the STC trajectory. For example, if two or more objects of the re-
quested type have a similar distance to the original point ¢, (often, this corresponds to a
high density in distribution of that object type), a query using the interpolated point ¢; may
return the object that is in fact farer away from g, if the interpolation moves ¢; closer to that
object. Likewise, range queries using ¢; may miss some objects on or close to the fringe of
the selected range as seen from g,, or include some that are just missed by a query using ¢,.

To sum up, STC trajectories perform well for any queries related to trajectory shape and
similarity. They will also generally perform well for any queries that do not require very
high precision, i.e., where results are expected to be on a granularity level corresponding
to edges. These are the kind of queries required for the application areas discussed above.

8 Conclusions and outlook
This paper presents semantic trajectory compression (STC) for compressing large volumes
of trajectory data. STC exploits the semantic embedding of movement in a geographical

context. It matches individual trajectories to a semantically annotated map and aggre-
gates movement chunks based on identical semantic descriptions. STC extends concepts of
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network-constrained indexing in moving object databases and techniques used in wayfind-
ing assistance. This paper’s main contribution lies in illustrating that the embedding of
human movement in its geographic context (here an urban transport network) can be ex-
ploited for compressing large volumes of raw trajectory data. Initial experiments show that
semantic compression achieves high compression rates for real and synthetic trajectories,
with arguably acceptable information loss.

As part of future work, movement modality (“walking,” “cycling,” “driving,” “going
by tram”) will be explored to improve compression and decompression in STC (cf. [14,41]).
Knowing the movement modality allows for an improved identification of reference points.
For example, for an individual traveling by train in compression intermediate reference
points, where the train stopped at stations, can be ignored and only the positions of the
stations where the individual entered and left the train need to be stored as reference points.
In decompression, movement modality reduces ambiguity. Traffic regulations restrict the
possible edges that movement may have occurred on, dependent on the modality. This
would rule out going clockwise through a roundabout when driving a car, for example.
Such possible behavior cannot be excluded for pedestrian movement (and may also happen
in motorized traffic; see the analysis in [44]). Further ambiguities may be solved by using
heuristics accounting for the likelihood for a correct match, for example, based on the travel
speed (cf. [28], who use odometry data to exclude unlikely candidates in matching GPS
fixes to a network).

So far, STC was developed primarily with a data compression motivation. Still, some
potential application areas of STC-compressed trajectories were suggested. These applica-
tions require queries on STC trajectories; their general behavior was discussed. However,
querying STC-compressed trajectories demands further analysis and, accordingly, alterna-
tive evaluation techniques for STC will be developed. The experiments in Section 5 in-
vestigated STC with respect to data compression rate and spatial accuracy, respectively
data loss of the compression-decompression sequence. Additional experiments will explic-
itly evaluate the spatiotemporal restoration accuracy in a more rigorous way, for example
“Where in space and time lies a fix of the decompressed trajectory with respect to its coun-
terpart in the original uncompressed trajectory?” (cf., e.g., [15] who present an error anal-
ysis for time slice queries). One way of assessing this spatiotemporal restoration accuracy
is the stochastic analysis of the distance between randomly selected pairs of correspond-
ing fixes (decompressed versus original). The compression of a trajectory could be called
“spatiotemporally accurate,” if the average spatiotemporal distance between such pairs
does not exceed a given threshold. Such evaluation, however, requires more accurate GPS
tracks than were available for the present initial study.
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