
JOURNAL OF SPATIAL INFORMATION SCIENCE
Number 4 (2012), pp. 31–56 doi:10.5311/JOSIS.2012.4.54

RESEARCH ARTICLE

Affordance-based individuation of
junctions in Open Street Map

Simon Scheider and Jörg Possin
Institute for Geoinformatics, University of Münster, Münster, Germany

Received: April 7, 2011; returned: June 22, 2011; revised: October 11, 2011; accepted: January 2, 2012.

Abstract: We propose an algorithm that can be used to identify automatically the subset
of street segments of a road network map that corresponds to a junction. The main idea is
to use turn-compliant locomotion affordances, i.e., restricted patterns of supported move-
ment, in order to specify junctions independently of their data representation, and in order
to motivate tractable individuation and classification strategies. We argue that common ap-
proaches based solely on geometry or topology of the street segment graph are useful but
insufficient proxies. They miss certain turn restrictions essential to junctions. From a com-
putational viewpoint, the main challenge of affordance-based individuation of junctions
lies in its complex recursive definition. In this paper, we show how Open Street Map data
can be interpreted into locomotion affordances, and how the recursive junction definition
can be translated into a deterministic algorithm. We evaluate this algorithm by applying it
to small map excerpts in order to delineate the contained junctions.

Keywords: junctions, intersections, individuation, road networks, affordances, navigation,
turn restrictions

1 Introduction and motivation

Road network maps, consisting of vector representations of roads, junctions, and points of
interest (POIs), are among the most widely used sorts of geodata. They enable navigation
systems, but also allow for georeferencing of diverse kinds of information, ranging from
traffic frequency [13] to information about public places of interest. Road network maps
furthermore enable map based orientation of users in their environment, since roads as well
as junctions can be used as landmarks in certain cases [9]. This pervasive relevance may
be the reason why Open Street Map (OSM)1, the world’s biggest open user-generated road

1http:�wiki.openstreetmap.org
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network data set, is currently considered as a general spatial semantic hub for interlinking
the web of data [20].
The usefulness of road network data in order to represent and guide navigation thereby

depends on the following factors:

• the quality and completeness of vector geometry data, labels, and relations; and
• the possibility to generalize information to different levels of detail.

The first claim seems beyond question. There are at least two arguments for the second
claim, one concerning performance and the other one concerning modeling of navigation.
Regarding navigation performance, we often need to represent junctions as generalized
objects (e.g., points) in order to use them as landmarks for orientation [10], or to schedule
car navigation over large-scale distances [21]. At the same time, navigation systems need
detailed representations of highway intersections in order to guide drivers through the
junction’s complicated sub-network. All this requires identification routines for junctions
at different levels of detail. Furthermore, if one wants to statistically model traffic over the
network [12], it is often necessary to take exemplars of generalized categories like roads
and junctions into account. For instance, to identify street segments as parts of a larger
junction is crucial in order to prevent a bias in traffic estimation [12]. The bias occurs if
one tries to estimate traffic on a highway segment based on observed traffic on a highway
intersection segment, e.g., a highway ramp. The latter needs to be distinguished from the
former because of reduced traffic on ramps [19]. Similarly, dual carriageways are roads
frequently represented in terms of parallel segments for each lane (compare Figure 2). If
lane segments are confused with single road segments, then they cause a similar estimation
bias [12].
Thus, there is a need to identify roads and junctions as semantic categories across dif-

ferent road network data sets as well as across different levels of detail. We consider our
present work as a step towards this more general goal. On a high level of generalization,
category instances may be represented as single vector data elements (e.g., single points
for junctions, or single segments for roads). On a low generalization level, they are usually
encoded as labels or relations among more detailed vector data elements. However, a per-
sistent problem is the heterogeneity and lack of availability of category information. The
authoritative standards for road network labeling (e.g., the GDF standard, ISO 14.825:2004)
do not assure availability and comparability of labels [19].
In order to approach this problem independently of a certain kind of data representa-

tion, road networks can be considered in terms of data semantics [17]. From an ontological
point of view [5], one can ask how to individuate and how to categorize road network junc-
tions in general. Categorization means to determine the type of junction, e.g., the number
of roads that intersect at it. Individuation means to identify the parts of a junction and,
thus, to distinguish individual junctions from others. For road network maps such as OSM,
which frequently do not have junction labels, these problems are challenging. Consider, for
example, the motorway junction “Wuppertal Nord” in Figure 1. Howmany roads intersect
at this junction? Where exactly does the junction start and where does it end? Which seg-
ments or nodes belong to it? For example, is the pink road segment which leads to L551 still
part of the junction? Is this question answerable at all in terms of the usual topological or
geometrical considerations? It seems inappropriate to identify this junction either in terms
of a node with corresponding cardinality, since the junction is not a node, or in terms of a
certain geometrical shape, since there is a large variety of junction shapes.
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Figure 1: The difficulty of individuating junctions, illustrated by the motorway junction
“Wuppertal Nord” (Source: OSM).

At first glance, it seems there is no definite answer to this question. However, in [18],
we have proposed a semantic theory of channel networks which is grounded in observable
locomotion affordances. An affordance is an action potential in the perceived environment
[6]. We proposed a definite answer in terms of an affordance-based definition of an n-way
junction. This definition is not based on segment geometry or topology, but on observed
affordances. It is therefore independent of a specific level of representation, while capturing
the intended meaning in terms of possible navigation manoeuvre. We showed that our
junction definition is satisfied by a collection of the most common junction types [18]. It
provides a general way of specifying the categories needed [17]. However, our junction
definition is quite complex and, in particular, recursive, because of minimality criteria.
Therefore, it does not translate easily into a useful algorithm.

In this paper, we develop and evaluate an algorithm to individuate such complex road
network junctions in detailed road network maps, such as OSM, Teleatlas, or Navteq. The
challenge is to translate the first order definition of [18] into an algorithm that terminates
in a reasonable amount of time, and that can be applied to small map excerpts of OSM
in order to delineate the contained junctions. Searching for junctions in large datasets, e.g.,
in the whole of OSM, may be based on this algorithm. However, the algorithm requires
further improvements in efficiency, in particular regarding large-scale search strategies,
which are not in focus in this paper.

In the remainder, we will first argue why and how far the question of junction indi-
viduation is still an open one (Section 2). We will then introduce channel networks, and
explain how OSM data maps into the channel network theory proposed in [18] (Section
3). Afterwards, we will recap our junction definition from [18]. We will then discuss an
algorithmic approach to the problem in Section 4, before we describe an implementation
for OSM in Section 5, and evaluate it in Section 6.
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2 Individuating road intersections semi-automatically

The necessity of representing road networks at different levels of granularity has been rec-
ognized early in geographic information science [21]. However, the question of how to
extract and generalize junctions is a research challenge up to the present day.

A naive approach to the problem would be to consider all nodes with a certain segment
cardinality in the street segment graph as a junction. However, as we have already argued,
this procedure does not help to identify complex junctions such as in Figure 1. Furthermore
this procedure could include erroneous cases, e.g., it may consider a bifurcating road as a
3-way junction.

More sophisticated approaches use complex shapes or the topology of the street seg-
ment graph. Most attempts are based on statistical knowledge extraction using geometrical
patterns. For example, extraction of roads and intersections is a common problem in remote
sensing [1, 8], and is solved based on pixel configurations. Road networks [24] and road
categories [7], such as circular roads, can be detected by geometrical patterns in a street
segment graph. For example, Mackaness et al. [11] identify junctions by spatial clustering
of street nodes. This method is simple and fast. However, it relies on a context-dependent
granularity parameter and cannot filter out unwanted features, such as small settlements.
More recent approaches try to extract the information from GPS tracks [3].

Doubtlessly, geometry and topology of street segments can be a valuable source of infor-
mation for describing categories [7, 19], especially in order to speed up search. However,
as we have argued in [19] and [17], the geometry or topology of an embedded segment
graph is not sufficient to capture all road network categories. The reason is that junctions
and roads are constituted by their functions, i.e., by locomotion affordances, but these are
only partially represented in terms of connected street segments. The main point is that a
segment graph misses out turn restrictions.

To illustrate, consider the generalization of a dual carriageway and a roundabout in
Figure 2 (example taken from [19]). The former is a road generalizable into a segment; the
latter is a junction generalizable into a node. The vertical arrow indicates the direction of
generalization. Black arrows next to segments indicate driving directions. Note that even
though in our figures we depicted right-hand traffic, all our arguments in this paper are
independent of the main driving side. We may strip away nodes o and q (selection) in the
dual carriageway and amalgamate nodes p and r to generate a single segment j. In the
roundabout, we may amalgamate nodes o, q, p,m, n, and r to a single node u. But on what
grounds? Obviously, there is no topological difference between the two subgraphs that
would allow us to distinguish between these two cases, and, thus, between junctions and
roads.

We suggest that the semantic difference between the two categories is not captured by
segment topology, but rather by turn restrictions. For in the dual carriageway, it is not
possible to turn from segment a into f crossing node m, while it is certainly possible to
drive from a to f in the roundabout. Note that this information is simply not contained
in the segment graph. It rather requires an additional turn off relation on top of it, as was
proposed already by Winter in [23].

The difference between a roundabout and a dual carriageway may also be based on its
elongated shape. However, this is an unreliable ad-hoc rule. For in the case of complex
junctions, we have to deal with a great variety of shapes and can have very many turn
restrictions (for examples, see Section 6.1). Our argument is that an affordance-based ap-
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Figure 2: Generalization of two embedded street segment graphs, one being a common
data model of a dual carriageway (a road), the other being a common data model of a
roundabout (a junction) [19].

proach to individuation is semantically prior to topology and shape, and thusmore reliable,
while topology and shape are rather indirect proxies. Therefore, the cost of basing individ-
uation on affordances corresponds to a gain in correctness and completeness, provided that
the information about affordances is somehow contained in the data.

3 Channel networks and junctions

Roads are parts of a medium for supported locomotion, i.e., they allowmovements supported
by a flat surface. But roads additionally exhibit conventional turn restrictions, observable,
e.g., by road signs or dotted versus full lines on a road surface. Turn restrictions are the
main instrument for traffic management, because they restrict the supported movements
to a regulatedmore or less homogeneous flow into discrete directions. A road is thus a case
of a physically manifested social affordance [22], because it presupposes the interpretation of
symbols on the road surface.

We defined a channel network in [16,18] as a medium for turn-compliant supported motion.
The observable fact that a pair of locations in the environment is connected by a continuous
support surface, that it affords supported locomotion, is denoted by a relation SupportC.
Channels are parts of support-connected media that restrict supported movements to a reg-
ulated flow into only one direction, from an entry portal to a distinct exit portal (Figure 3).
Channels do not overlap each other and are not self-connected at their portals. They exist
in finite amounts and can be perceived based on traffic conventions: channels are discrete
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parts of the environment in which supported movements are restricted by convention, for
example, by perceivable signs on the road surface.
If two channels are connected such that one can move from one to the other via appro-

priate portals, this is expressed by the irreflexive affordance relation LeadsTo(x, y) [16, 18],
whose domain and range consists of channels in the environment of the observer. The
transitive closure of this relation, which was called ReachableFrom in [16, 18], denotes those
paths of channels that afford turn-compliant locomotion.
A channel network can be defined as a mereological sum of channels being a whole with

respect to reachability, so that every channel is reachable from every other one inside of
it [18]. If we consider a network’s set of channels as a set of vertices V , and the relation
LeadsTo as the arc relation A, then it can be described by a directed graphD(V,A) [18].

3.1 Interpreting channel networks in terms of OSM data

Figure 3: Illustration of a channel [19].

Every navigation-oriented road network data model is based on an embedded graph
of street segments. In this data model, nodes and undirected edges (segments) are (non-
planarly) embedded into the Euclidean plane. However, a channel network is not the same
as a street segment graph.
Channels can be embedded into the plane in terms of street segments whose end nodes

indicate some kind of intersection (Figure 4, right). But channels are not identical with these
segments, since channels may correspond to the “side lanes” of a bidirectional segment, as
in Figure 4(2), as well as to a single street segment in the case of one way streets, shown in
Figure 4(1).
Furthermore, as we have argued in Section 2, the data model of a channel network is

more complex than an embedded street segment graph. It also requires a relation that
accounts for LeadsTo, i.e., for turn-compliant navigation among channels. In Figure 4, we
have depicted example channel configurations (left) together with their equivalent road-
network data models (right). In the data model subfigures, the LeadsTo relation is depicted
by dotted arrows; channels are represented as full arrows; and the street segments are
represented as a separate undirected embedded graph with lines and nodes. As one can
see, LeadsTo is not captured by the segment graph alone, since the two branching edges of a
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Figure 4: Channel configurations (left) corresponding to road network data elements (right)
[19].

diametrical bifurcation, as in Figure 4(2), are connected at a common node, but do not lead
to one another.

For our purpose, the street segment graph of OSM can be simplified into a set of
intersection-free navigable way segments. We propose the following rules to reconstruct chan-
nels and the LeadsTo relation from available tags and relations:

1. Dissect ormerge all navigableways (tagged as “highway”) intomaximal intersection-
free way segments with all inner nodes of degree≤ 2.

2. For every bidirectional way segment, construct 2 channels c1, c2, one towards and one
from an incident node. These channels may not lead into one another, but are always
support-connected SupportC(c1, c2). We call c1, c2 adjacent in the following.

3. For every one-way segment, construct one channel. For all dead end segments, con-
struct two channels leading to each other at the dead end node.

4. At every OSM node, all towards-from pairs of channels that are not adjacent (see
point 2) and not subject to any turn restrictions2 are also connected by LeadsTo.

2In comparison to commercial navigation networks, turn restrictions are only sparsely recorded in OSM via so-
called restriction relations, see http:�wiki.openstreetmap.org/wiki/Relations/Proposed/Turn Restrictions. Note
that this introduces some uncertainty into our evaluation.
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3.2 Junctions and what they afford

Following [18], a junction can be conceived as an induced subgraph F (U,O) of a channel
digraph D(V,A) with a special kind of affordance. We already said that any part of a road
network reflects social locomotion affordances. But over and above this, junctions essen-
tially afford a certain human choice among different locomotion paths. This was called
mental affordance by Raubal [15]. The set of paths to choose from arises from reachability of
some vertices, called entries, exits, and gates. Consider all arcs from A \ O that are incident
with vertices in U (connecting F with its complement in D), and call them in/out bridges of
F . We call a vertex v ∈ U an entry of F if and only if it is a terminal vertex of an in-bridge,
and an exit if and only if it is an initial vertex of an out-bridge. The set of bridge-incident
vertices in U that are either entries or exits (but not both), is called gates of F [18].

Definition 1 (n-way junction). An n-way junction is an induced subgraph F of a channel digraph
D, which:

1. affords n − 1 (n ≥ 3) navigational choices for n entries, as there is a walk from each of the n
entries to n− 1 exits, except into the opposite direction (total reachability);

2. affords movements to enter and leave through gates (discreteness of navigational action);
3. does not contain a smaller n-way junction (minimality I); and
4. has entries and exits with a minimal vertex degree of two. Entries have either more than one
internal successor or an internal predecessor. Analogously, exits have either more than one
internal predecessor or an internal successor (minimality II).

We explain andmotivate these properties in the remainder by analyzing amedianU-turn
junction (see Figure 5). At a median U-turn intersection, the main road, a dual carriageway,
intersects the minor road, which is a bidirectional road. It is prohibited to turn off to the
left from the major road or onto the major road at the intersection point. These left turns
are only possible via U-turn channels (see data model in Figure 5).

In Figure 5, the LeadsTo relation is indicated by gray curved arrows that lead from a
channel to a successor. Exits and entries of the subgraph are numbered anticlockwise. In
the corresponding channel digraph in Figure 6a, channels are depicted as vertices and the
LeadsTo relation as arcs. Exits and entries have equivalent numbers.

The first and most obvious property is that junctions must afford paths from each entry
to each exit, except the one in the opposite direction (total reachability). Thus they enforce
a navigational choice. If a driver has entered a junction, the driver is afterwards forced to
take a directional decision by taking one of a set of n− 1 paths inside of it. If one leaves out
the dotted arc in Figure 6b, then entries one, two, and four are affected and lose their paths
to exits three and four, so that this subgraph is not a junction anymore.

The second property, discreteness of navigational action, seems to be common to every
road network feature. If people are speaking of “staying on or leaving a junction,” they
mean discrete actions: the process of entering, staying on, or leaving a junction is unam-
biguous for a moving object inside of a channel. The subgraph in Figure 6c (in black) is
a part of the median U-turn that satisfies the total reachability assumption. But because
neighboring exits and entries coincide, this subgraph violates the discreteness property.

We furthermore need minimality assumptions for junctions. This is because one can
usually supplement a junction with further channels such that it still satisfies the other
properties. In a first sense, a junction is minimal because it never contains a smaller junction.
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Figure 5: A median U-turn (“Michigan left”) intersection, including an example from Ari-
zona (top) and its associated segment data model (bottom).

In a second sense, we require a minimal vertex degree for entries and exits. For details,
compare the discussion in [18].

4 Algorithm for individuating junctions

In this section, we develop an algorithm that makes affordance-based Definition 1 com-
putable, i.e., that can be used to identify junctions as subgraphs in a road network, such as
OSM. The pseudocode in this section makes use of some well known operations on com-
mon data types. A universal super type is denoted by letter T . T ∗ is the type of an array
of T instances. Well-known data types are denoted by their usual names. All operations
and constants are explained in the text. The most important ones are listed in Table 1. A
synopsis of the entire procedure will be given in Section 5.

JOSIS, Number 4 (2012), pp. 31–56
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Figure 6: A median U-turn channel subgraph.

4.1 Checking junction properties by DFS back-propagation

In order to inspect the total reachability property of Definition 1, we have to collect all paths
from all entries of a subgraph F to all of its exits. For the sake of simplicity, we collect all
paths from all vertices to all other vertices using a time-efficient solution based on depth-
first search (DFS) [4]. If there is a problem with storage space, then this algorithm could
be slightly modified such that only paths between entry/exit candidates (see definition in
Section 4.2) are collected.
Suppose that a channel network D(V,A), a directed graph, is given by a domain of

vertices V and the functions Succ and Pred denoting the arcs. We intend to check whether a
given subset of vertices U of induced subgraph F (U ,O) is a junction or not. For reasons of
efficiency, we will use a flag Subgraph to identify vertices in U . This flag is set in Algorithm
1, which also identifies exits, entries (stored in lists Entries and Exits), and the vertex degrees
in subgraph F . Beginning at one entry of F , Algorithm 2 recursively visits vertices of
the subgraph F in DFS fashion: it colors them gray while moving to unvisited (white)
vertices; stops if vertex a was already visited or does not have successors; backtracks to the
last forking vertex coloring all vertices on its way in black; and then moves forward until
exhaustion, producing a “spanning tree” subgraph. Edges of this tree are marked by the
flag Forwardedge. Back-edges, i.e., edges pointing from a tree vertex to a vertex up in the
tree (thus producing a cycle), are stored in the list Cycleedges.
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Operations Type Explanation
V Vertices (channels) of channel digraphD
U Vertex subset of subgraph F in V

Succ(),Pred() V → V Returns the successor (predecessor) vertex inD
Subgraph() V → Bool Flag for vertices U
Entries, Exits List List for entries (exits) of F
Forwardedge() V × V DFS spanning tree edges
Cycleedges() V × V DFS spanning tree back edges

Reaches().vertices V → List Returns a vertex list reachable from a vertex
Reaches().paths V → List Returns a path list reachable from a vertex

Visit() V → w|b|g Color flag for vertices visited in DFS
Out(In)degree() V → N Returns the out(in)-degree of a vertex
SelectC() N× N → List SelectC(n,m) Returnsm-combinations out of n

[ ] T ∗ → List Takes array a, ..., b and returns list [a, ..., b]
. [ ] List× N → T Returns a list element, e.g., [a, b].[0] = a

.append List× T → List Appends elements at the end of a list, e.g.,
[a].append(b) = [a, b]

length() List→ N Returns the length of a list, e.g., length([a]) = 1
.Contains List× T → Bool Tests whether a list contains an element, e.g.,

[a].Contains(a)
[] List The empty list

Table 1: Inventory of important types, pseudocode operations, and constants.

Algorithm 1 J-PREPARE(U ): prepare subgraph and detect entries and exits.
Require: U is a subset of vertices V of channel digraph D
1: For all v ∈ V , empty flag Subgraph(v)← false and In(Out)degree(v)← 0
2: Entries← []; Exits← []; {Create empty lists}
3: for all v ∈ U do {Set flag for subgraph membership}
4: Subgraph(v)← true
5: end for
6: for all v ∈ U do {Collect all entries and exits of U}
7: while Pred(v) = v′ do
8: if Subgraph(v′) = false then
9: Entries← Entries.append(v)
10: else
11: Indegree(v)++ {Countup internal in-degree of v}
12: end if
13: end while
14: while Succ(v) = v′ do
15: if Subgraph(v′) = false then
16: Exits← Exits.append(v)
17: else
18: Outdegree(v)++ {Countup internal out-degree of v}
19: end if
20: end while
21: end for

JOSIS, Number 4 (2012), pp. 31–56
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The essential idea in Algorithm 2 is to use the DFS-principle of back-propagation to broad-
cast the information about (1) reachable vertices and (2) the paths to these reachable vertices
from each vertex of the subgraph upwards in the tree. So when the algorithm has stopped
building the tree, and each vertex has been backtracked (and is thus colored in black, not
just gray), then each vertex v in the tree has a list Reaches(v).vertices of all vertices reachable
in this tree (as well as a list of corresponding paths Reaches(v).paths). The time complexity
of this algorithm is, unlike ordinary DFS, quadratic in the size of the subgraph F (U ,O) in
the worst case, because for each vertex, we collect all paths to other vertices.

Algorithm 2 TR-DFS(v): Total reachability depth-first search.
Require: Visit(v) = white; Subgraph(v) = true;
1: Visit(v)← gray {Color vertex as visited but not yet backtracked}
2: Reaches(v).vertices ← Reaches(v).vertices.append(v) {Register new reachable vertex lo-
cally}

3: while Succ(v) = v′ do
4: if Subgraph(v′) = true then
5: if Visit(v′) = white then
6: Forwardedge(v, v′)← true {Mark edge as forward}
7: TR-DFS(v′) {Call recursion}
8: else if Visit(v′) = gray then {Collect back-edges to update cycles}
9: Cycleedges← Cycleedges.append(v, v′)
10: end if
11: for all i = 0; i < length(Reaches(v′).vertices); i++ do
12: Reaches(v).vertices← Reaches(v).vertices.append(Reaches(v′).vertices.[i])

{Back-propagate reachable vertices}
13: Reaches(v).paths← Reaches(v).paths.append(Reaches(v′).paths.[i].append(v′))

{Back-propagate the paths to these vertices}
14: end for
15: end if
16: end while
17: Visit(v)← black {Color vertex as already backtracked}

But the subgraph F will frequently contain circuits. This complicates the situation, since
the collected tree paths do not necessarily contain the paths to those vertices upwards in
the tree that are reachable from downwards in a cycle. The paths stored in a vertex that was
alreadyvisited are indeed backtracked into such a circuit (compare lines 10-12 in Algorithm
2). But if this vertex happens to be still in gray, then the reachability information is not there
yet. We therefore have to do a separate back-propagation after the execution of Algorithm
2, which backtracks vertices at Cycleedges, see Algorithm 3.
Since subgraph F is not necessarily strongly connected, nor even connected, it has to be

covered by a forest, i.e., a set of trees. To this endwe have to execute Algorithm 2 iteratively
until exhaustion. The exhaustive execution of TR-DFS() and also the cycle backtracking of
Algorithm 3 are both controlled by Algorithm 4. This procedure starts TR-DFS() at a yet
unvisited entry and goes on until all entries are visited. This is more efficient than starting
from arbitrary vertices, because it helps averting unnecessarily many subtrees in the forest
if entries happen not to be reachable from such a starting vertex. Since the call to TR-DFS()
is done only once for all visited vertices and edges, the time complexity is unchanged. Once
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Algorithm 4 terminates, all necessary information for testing the junction properties are
collected. Algorithm 5 implements the test for total reachability, junction order, discreteness
and minimality II for the subgraph currently marked with the flag Subgraph.

Algorithm 3 BACKP(y, z, z′): Independent back-propagation for cycles.
1: for all i = 0; i < length(Reaches(z).vertices); i++ do {Back-propagation of paths}
2: Reaches(y).vertices← Reaches(y).vertices.append(Reaches(z).vertices.[i])
3: Reaches(y).paths← Reaches(y).paths.append(Reaches(z).paths.[i].append(z))
4: end for
5: while Pred(y) = x do
6: if Forwardedge(x, y) = true AND z′ �= x then
7: BACKP(x, y, z′) {Recursion}
8: end if
9: end while

Algorithm 4 J-PROCESS(): Build a spanning forest for the current subgraph.
Require: Flag Subgraph is set, and list Entries is filled
1: Set all vertices v ∈ V : Visit(v)← white; Reaches(v)← [[], [[]]]
2: For all edges (x, y) ∈ A set Forwardedge(x, y)← false
3: Cycleedges← [] {Create empty lists}
4: for all v in Entries do {Call recursive TR-DFS() until exhaustion}
5: if Visit(v) = white then {Start call only if entry was not visited yet}
6: TR-DFS(v)
7: for all (y, z) in Cycleedges do {Update cycles}
8: BACKP(y, z, z)
9: Delete (y, z) from Cycleedges
10: end for
11: end if
12: end for

4.2 Searching for junctions in an efficient way

In order to check for minimality I, we have to test whether a given induced subgraph
F (U ,O), the candidate junction, contains no smaller induced subgraph which is also a
junction candidate (see Definition 1). It is obvious that by solving this problem, we also
solve the problem of searching for a junction in an arbitrary network. In a naive approach,
we could just iterate through all true subsets U ′ of its set of vertices U , each time run J-
PREPARE(U ′) and J-CHECK(n), and return a positive result if these checks are all negative.
This procedure has exponential time complexity of O(2|U|): it is intractable since we have to
iterate through the power set of U by switching all vertices on and off in all combinations.

Amore efficient solution would have to constrain the size of the subset we are searching
for. Time complexity is then only polynomial in data size, with the polynomial bounded
by the size of the target subset m. For example, it would be O(|U |m) if we naively iterated
through all possible m-fold one-element selections from |U |. If we furthermore rule out
“same element” and “same set” selection sequences, we arrive at algorithms for selecting
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Algorithm 5 J-CHECK(n): Junction checks (except minimality I).
Require: n is the user-specified junction order
Require: J-PREPARE() and J-PROCESS() have been executed
1: Set Check← false, For all ex in Exits, set Ennr(ex)← 0
2: Check← length(Exits) = length(Entries) = n {Check junction order}
3: for all en in Entries do
4: Check← (Outdegree(en) + Indegree(en) ≥ 2) {Check minimality II}
5: exnr← 0
6: for all ex in Exits do
7: Check← (Outdegree(ex) + Indegree(ex) ≥ 2) {Check minimality II}
8: if Reaches(en).vertices.Contains(ex) then
9: exnr++ and Ennr(ex)++
10: end if
11: Check← (en �= ex) {Check discreteness}
12: end for
13: Check← exnr ≥ (n− 1) {Check total reachability for entries}
14: end for
15: for all ex in Exits do
16: Check← Ennr(ex) ≥ (n− 1) {Check total reachability for exits}
17: end for
18: return Check {If false, test has failed}

sets “m out of U .” This can be solved even more efficiently, namely in O(
(|U|
m

)
), using,

e.g., lexicographically orderedm-combinations from |U | numbers. In the following, we assume
that we have such an algorithm available for integer sets: function SelectC(u,m) (for “select
combination”) returns integer lists consisting of m lexicographically ordered members of
the integer set {0, ..., u− 1} in a lexicographically ordered sequence. For example, if u =
3 and m = 2, the first call SelectC(3, 2) would produce [0, 1], and then iteratively [0, 2]
and[1, 2], to produce exactly the

(
3
2

)
= 3 different combinations of 2 out of 3 numbers.

The main question is then how to constrain the target set in size. We do not know the
size of a target junction a priori. But since Definition 1 of an n-way junction is exclusively
based on the set of n entries and n exits of a subgraph, we can reformulate the problem:
search for a fixed sized set of 2n vertices in a set of entry/exit candidates of F of the junc-
tion F (U,O), such that they are totally reachable, discrete and minimal II in the sense of
Definition 1, but do not coincide with the original entries and exits in F .
We can meaningfully restrict the set E of entry/exit candidates to only those vertices

of U that are either actual exits/entries of F , or have a degree of at least 3. This is because
F -internal vertices with degree 2 can never satisfy the discreteness property, as they are
bound to lose at least one edge in order to become an entry or exit. We could then use
SelectC(|E|2, 2n) to enumerate all 2n-subsets in time O(

(|E|2
2n

)
). But by incorporating the

first requirement of total reachability, we can further simplify the problem.
For this purpose, we need to take into account reachability relations among vertices in

E. We can construct a bipartite graph B as in Figure 7, mapping E to itself, E′, where E are
potential entries and E′ potential exits. Now suppose we construct the bipartite graph B
such that there is an edge from vertex v ∈ E to vertex v′ ∈ E′ if and only if:
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Algorithm 6 JUNCTION-MINIMALITY(n): Check for minimality I.
Require: J-CHECK(n)= true has been executed successfully
Require: Entry/exit candidates E have been collected as described in the text
1: Check← true; OrEn← Entries; OrEx← Exits {Store original entries/exits}
2: ConstructGrid(X ← E, Y ← E){Construct a grid (matrix) from candidates E of junc-
tion vertices U as described in the text, with X (columns) denoting exit- and Y (rows)
entry-candidates, andwith value 1 for each reachable entry/exit pair, and 0 otherwise.}

3: for all i = 0; i < |E|; i++ do {for all columns i in the grid}
4: for all h = 0;h <

(|E|
n

)
;h++ do {for all entry-subsets h of length n}

5: Generate subcolumn Ci,h of length n from grid column Ci =[
[(xi, y0), ..., (xi, y|E|−1)

]
using index list listh ← SelectC(|E|, n), and if Ci,h

contains at most one 0, add it to a list L. Otherwise, do nothing.
6: end for
7: end for
8: Order L lexicographically using index h of each column. Now columns with identical

n entries plus columns sharing subsets of size (n− 1) are exactly adjacent.
9: for all h = 0;h <

(|E|
n

)
;h++ do {for all entry-subsets h of length n}

10: m← the number of columns in Lwith identical index h
11: for all k = 0; k <

(
m
n

)
; k++ do {for all n× n subgrids ofm× n grid h in L}

12: Select subgrid k using indices SelectC(m,n)
13: if (every row of k has at most one 0) and

(not for all xi, yj in k, OrEx.Contains(xi) and OrEn.Contains(yj)) then
14: For all pairs (xi, yj) with value 1 in subgrid k, add all paths

(Reaches(yj).paths.[p]).append(yj) having Reaches(yj).vertices.[p] = xi to a
list of vertices Uk.

15: J-PREPARE(Uk) {Update the entry and exit lists of the subgraph}
16: if J-CHECK(n)= true then
17: Check← false and BREAK
18: end if
19: end if
20: end for
21: end for
22: return Check {If false, test has failed}

1. v is not an exit, and v′ not an entry, and there is a path from v to v′ in F ; and
2. v is not the same vertex as v′, i.e., same vertices are not connected by default.

This bipartite graph represents the reachability properties among entry/exit candidates in
F , and can thus be used to restrict our search to subgraphs that satisfy total reachability.
Our problem can then be reformulated as finding a certain bipartite subgraph Kn−1 in B,
namely a subgraph in which n vertices from E are connected to at least n− 1 vertices from
E′, and n vertices from E′ are connected to at least n − 1 vertices from E (compare Figure
7, right).

The bipartite subgraph satisfies the total reachability property among entry/exit candi-
dates, but does not yet correspond to a junction since the other properties need to checked
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Figure 7: Bipartite graphs and their grid representations. A K2,3 complete subgraph (thick
edges, left), corresponds to a subgrid (thick points, middle). A K3−1 subgraph (right) cor-
responds to an incomplete subgrid with a missing diagonal (gray points, middle).

on the corresponding induced subgraph. Once we found such a Kn−1, we can easily re-
construct the corresponding F -subgraph K(Uk, Ok) by adding vertices of a path to its set
of vertices Uk for eachKn−1-edge, drawing on the already stored paths between the candi-
dates in F . Note that entry/exit candidates do not necessarily correspond to true entries and
exits in the corresponding induced subgraph. Still, the existence of a set of totally reachable
candidates in this subgraph is a necessary property, which is used here to speed up search.
How can we search for Kn−1 in an efficient way? As was shown in [2], the similar

problem of counting all “complete” Kn,n subgraphs of a bipartite graph (in our case an
|E| × |E|-graph) can be solved in roughly O(|E|(|E|

n

)
) by transforming B into a plane grid

of points with coordinates X = E′ (exits) and Y = E (entries), as in Figure 7, middle, and
by collecting and ordering lexicographically all subcolumns of length n in this grid. For
example, in Figure 7, aK2,3 subgrid with 2 subcolumns of length 3 is depicted by the thick
points in the middle.
But in contrast to [2], we need to find a Kn−1 subgrid with an empty diagonal instead,

since we want to allow for one non-reachable exit per entry (compare Figure 7, middle,
gray points). This corresponds to the impossibility of leaving the junction in the opposite
direction of entry (compare Section 3.2). This is slightly more complex (compare Algorithm
6). In this case we need to collect all grid subcolumns having (n − 1) entries in common
with any given entry subset h ⊂ E of length n, order them lexicographically in list L
using an index for h, select all n × n subgrids k for each subgrid with index h, and check
whether all rows in k have at most one missing exit. This has a slightly larger complexity of
O(|E|(|E|

n

)
n), since for every entry subset h of size n, we have to enumerate n subcolumns

of size n−1. Algorithm 6 contains the pseudocode for a procedure that enumerates all such
subgrids, reconstructs the corresponding channel subgraphs from paths, and checks them
for junction properties.
The actual runtime is not pre-determinable since it depends on the size of E and the

structure of B, which both depend on the connectivity of the channel subgraph F . While
the algorithm is bound to have a polynomial runtime complexity, it is efficient only if F is
sufficiently connected and thus |E| increases slower than |U |. The size of E would increase
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dramatically if we increased the number of unconnected components in F , since all their
bordering vertices automatically become entry/exit candidates. However, this possibility
can be excluded for junctions, since their subgraphs are always connected, and so this is in
fact a comparatively efficient solution.

5 Implementation

In this sectionwe present a plugin for the OSM editor JOSM that implements the algorithms
described in Section 4. A general description of the plugin can be found in http:�wiki.
openstreetmap.org/wiki/JOSM/Plugins/JunctionChecking and [14]. JOSM is the most
frequently used OSM editor. Our plugin enables the creation of a channel digraph from
OSM data and searching and checking this digraph for junctions. We discuss its use by
a junction example in Figure 8. The channels of the digraph are shown as red lines. In
this diagram, a way segment that is drivable in both directions, and thus consists of two
channels, is shown as red line without arrows. Single channels of one-way street segments
are indicated by arrows.

The data model of JOSM is like other popular GIS. JOSM can show different kinds of
geographical data, for example GPS tracks or OSM data. Each data source has its own
layer. A channel digraph can be generated from a layer that contains OSM data. If the
plugin is loaded there is a new dialog window in the lower right part of the JOSMwindow.
In this dialog window, the user can create a channel digraph, analyze junctions or search
for junctions.

In order to create a channel digraph, an OSM layer must be made active by clicking on
it. Before transforming the layer (the transformation rules are described in Section 3.1), the
user can choose whether he or she wants the plugin to analyze the strongly connected com-
ponents of the created channel digraph. This is recommended and is selected by default.
Checking junctions in subgraphs that are not strongly connected results in errors due to
artificial gates. After analysis, components that are not strongly connected are shown in a
different color in JOSM and should not be used for further junction tests.

After clicking the channel digraph creation button, the channel digraph is shown as a
separate layer in JOSM. In this layer, the user can mark channels for junction tests. For
example, let us analyze the junction “Koldering/Weseler Strasse” in Münster, Germany.
First, we mark the channel subgraph candidate by clicking or drawing a rectangle (see
Figure 8a). Then we need to set the junction order n in the plugin dialog window. Since
there are three possibilities to enter or leave the junction, it is a 3-way junction.

In order to perform a junction check, we need to push the “junction check” button.
This invokes the procedure depicted in the flowchart of Figure 10. There are three possible
results :

1. Positive: The marked channels represent a junction. In this case (and if a default
option is chosen), an OSM relation will be generated that contains the junction and
stores its order. The discovered junction will be displayed in another color.

2. Negative: The marked channels do not satisfy all of the junction criteria total reacha-
bility, discreteness of navigational action and minimality II (Section 3.2). In this case
the user will be informed in an additional dialog window.

3. Negative: The marked channels satisfy the three junction criteria total reachability,
discreteness of navigational action, or minimality II, but not the criteria minimality I.
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(a) Marked channels at the beginning of the analy-
sis. Blue turn off signs depict actually existent turn
restrictions.

(b) Junction candidate found by the plugin. Blue
turn off sign depicts those turn restrictions that
were recorded in OSM.

Figure 8: Example for a junction check: Koldering in Münster, Germany. Red lines depict
channels.

Figure 9: Smallest junction found by the plugin: Koldering in Münster, Germany.

This means the subgraph contains a smaller junction. The minimality I test stops as
soon as it finds a subgraph within the original subgraph that satisfies the three other
junction criteria. This subgraph is displayed in another color and represents another
junction candidate for testing. To check this candidate, we have to perform another
minimality test, as indicated by the loop around the minimality check in Figure 10.

In our example, the plugin discovered a smaller junction candidate (see Figure 8b) which
needs to be tested again. This second run results in a new junction candidate (see Figure
9). After we checked this junction again, the result is positive and all criteria are satisfied.
The junction found in this example will be evaluated in Section 6.1.
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Figure 10: Flowchart of the junction check procedure. Process names correspond to algo-
rithms of Section 4.

The junction search is just an exhaustive minimality check. The user marks an arbitrary
subset of channels in the channel digraph layer and pushes the “junction search” button.
The plugin then searches for junction candidates with the preset junction order (default
value is n = 3). This is done by a slightly modified Algorithm 6: we do not stop after
finding a junction candidate, but search for all of them and store them in one list. After-
wards, the candidates in the list are compared for mutual inclusion. If a candidate includes
another one, it cannot be a junction because of criteria minimality I, and thus is removed
from the list. This proceeds until only true junctions remain.

6 Evaluation

In this section, we will evaluate our approach in a twofold way. We will first analyze some
example junctions found by the plugin and discuss their quality. Afterwards we analyze
the computing time of searching in a subset of channels for junctions.

6.1 By examples from OSM

The first example is the minimal form of a 4-way junction. It consists of just eight channels:
four entries and four exits, as for example the junction “Wolbecker Strasse /Hansaring”
(see Figure 11a). The eight channels are connected by a single OSM node. The junction
check is positive for this example.
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(a) Example for a smallest 4-way junction: “Wol-
becker Strasse/Hansaring” in Münster, Germany.

(b) Example for another 4-way junction: “Weseler
Strasse/Inselbogen” in Münster, Germany.

Figure 11: Two examples for 4-way junctions.

A more complex successfully discovered example is the junction “Weseler Strasse /In-
selbogen” (see Figure 11b). It consists of a way with separate lanes for both directions
(Weseler Strasse) and a way with only one lane for both directions (Inselbogen). The street
with two lanes is represented by two OSM ways which are tagged as “one-way.” In ac-
cordance with our rules in Section 3.1, each one-way corresponds to one channel. This
example is also a 4-way junction although there are two more channels in the subgraph.
They are the result of the physical separation of the lanes of the Weseler Strasse.
The examples so far did not require any turn restrictions, since every topologically pos-

sible manoeuvre was actually allowed. But we already discussed a junction with turn re-
strictions in Section 5. In this junction, not every topologically possible turn is allowed
(compare Figure 8a). But only one out of three existing turn restrictions were observed by
OSM mappers and recorded in terms of an OSM relation (see Figure 8b). Therefore the
junction could not be identified properly by the affordance based algorithms. In fact, the
plugin erroneously detects a smaller junction due to fictitious turn possibilities. The exist-
ing turn restriction disallows movement from the Koldering entry E1 to exit A3. But in the
discovered junction candidate, it is still possible to move from entry E3 (Weseler Strasse)
to exit A2. In reality this would mean taking the left turn lane at first, but then suddenly
return to Weseler Strasse via exit A2.
Therefore, the existing OSM dataset is incomplete and only partially suited in order to

represent the actual affordance, as seen in Figure 8a. There seems to be a problem with
the given OSM data quality in this respect: we discovered not one junction in the main
city of Münster where all necessary turn restriction were recorded. The implications of this
insight are discussed in Section 7.
At last, wewill analyzemotorway junctions and show that an evenmore complex struc-

ture can be mastered without problems if the affordance information is complete. Motor-
way junctions are complex but do not require turn restrictions since they are not signalized.
Normally one can only turn off to one side of the road, and the only existing turn restriction
results from the topology of the OSM channels: a restriction to drive into the end of one-
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Figure 12: Example of a 4-way motorway junction: “Schönfelder Kreuz.”

way streets need not be explicitly recorded. So we have no reason to expect errors in this
case.

The first motorway example is the motorway junction “Schönfelder Kreuz” at Berlin,
Germany (Figure 12). It is a 4-way junction that consists of 47 channels. The last example is
a complex 5-way junction with 71 channels (see Figure 13). The motorway junction “Wup-
pertal Nord,” which motivated our paper in Figure 1, consists of two motorways crossing
one primary street. The primary street as well as the motorways have two lanes for each
direction. Both junctions were correctly identified by the plugin.

6.2 Performance evaluation

In this section, we evaluate the computing time of the algorithm (compare Section 4.2).
The plugin has a command-line interface to record statistics about the computing time of
junction searches. The time complexity of junction search depends mainly on two meth-
ods in the Java source code: GenerateSubColumns() (rows 3–6 in Algorithm 6) and Iter-
ateThroughKN() (rows 7–16 in Algorithm 6). The first method searches for all subcolumns
of length n− 1 in the constructed grid (see Section 4.2). The second constructs correspond-
ing totally reachable subgraphs and tests them for discreteness of navigational action and
minimality II.We analyzed only junction search since it is the worst case of a junction check.

We evaluated time complexity by performing automated search in a constantly growing
connected subset of channels. The search was started with five channels in a subset, there-
after with six channels, and so on, until a predetermined upper limit was reached. The
candidate subgraphs were selected in the following manner: a seed channel was selected
incidentally, and outgoing channels were added recursively until the maximum subset size
was reached. In this case, the subgraphs are assured to be connected and hence the grid
size could not increase dramatically, as argued in Section 4.2.

For each subgraph, the computing time for GenerateSubColumns() was measured in
milliseconds. We performed multiple runs for a subset size and averaged computing time.
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Figure 13: Example of a 5-way motorway junction: “Wuppertal Nord.”

The performance of GenerateSubColumns() was tested in five runs up to a subset of 50
channels by averaging values. The result is shown in Figure 14a in terms of the red curve.
Computing time grows moderately but does not exceed one second. This seems reason-
ably fast for practical purposes. For comparison, we have also plotted the performance for
random channel selection (green curve), in which subgraph connectedness is not assured.
This has inefficient cubic growth, but represents unrealistic conditions.
The computing time of the IterateThroughKN() method is depicted in Figure 14b in

terms of the green curve. In this case, values were not averaged, but represent a typical

www.josis.org

http://www.josis.org


AFFORDANCE-BASED INDIVIDUATION OF JUNCTIONS 53

3.5
Co

m
pu

tin
g 

tim
e 

fo
r g

en
er

at
eS

ub
Co

lu
m

ns
 (s

ec
s) 3.0

2.5

2.0

1.5

1.0

0.5

0

Number of channels
5045403530252015105

Subsets of disconnected channels
Subsets of connected channels

(a) Red curve shows average computing time for the
GenerateSubColumns() method in seconds.

9

Co
m

pu
tin

g 
tim

e 
(m

in
s)

8

7

6

5

4

3

0

2

1

Number of channels
5045403530252015105

iterateThroughKn() method
generateSubColumns() method

(b) Green curve shows typical computing time of Iter-
ateThroughKN() in minutes.

Figure 14: Computing time of junction search algorithm for different subgraph sizes.

result of a run. Expectation values evidently grow in connection with the growing number
of channels, while the actual computing time often remains zero if no adequate channel
configuration was found in the preceding method (see subgraph size 45 and 49). Inside
the tested range of graph sizes, it can happen that the method needs several minutes to
terminate.

In summary, we note that algorithm performs sufficiently fast for the intended purpose,
which was to individuate junctions in a small connected subgraph of a channel network,
e.g., in an OSM map excerpt in which one wants to delineate particular junctions. For
search in larger datasets, however, further research effort is needed to increase efficiency.

7 Conclusion

In this paper, we treated the problem of how to individuate junctions in road network map
excerpts, i.e., how to automatically identify them in terms of a street segment subgraph. We
argued that current approaches ignore a crucial source of information (Section 2), namely
information about turn-compliant locomotion affordances. The channel network theory is
a semantic theory that directly represents these affordances [18]. In the paper, we showed
how this theory can be interpreted into a road network database like OSM, and how a
recursive definition of an n-way junction can be translated into an algorithm with testable
correct results, and with acceptable runtime behavior for small map excerpts.

The algorithm requires a channel digraph to be reconstructed from the road network
dataset. For this purpose, the information about turn restrictions must be available in it.
In OSM, turn restrictions are in principle recorded, but are often incomplete. As a result,
affordance-based search sometimes produced incorrect results in our evaluation. However,
this problem disappears as soon as the algorithm is applied to a dataset of higher quality,
such as Navteq or Teleatlas. This reveals that beyond cartographic displays, crowd-sourced
navigation networks still seem to miss some of the quality required to take over from com-
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mercial datasets. It also indicates that our affordance-based approach may be used as part
of a data quality assurance process for vehicle navigation purposes.
Alternative approaches to junction search, based solely on the geometry of the street

segment graph, may be simpler and faster since they do not dependent on affordance ob-
servations. However, they are not sufficient since they miss out essential turn restrictions
that are not reflected in this graph. As soon as one takes the latter into account, one effec-
tively needs to reason about affordances.
There are several ways in which this work can be extended. First of all, the general

method should also be usable for roads. Regarding junctions, the definition in [18] still
excludes certain types of them, e.g., roundabouts. Furthermore, the definition still allows
for overlapping individuals, which may be unwanted. A more general search over differ-
ent junction types, e.g., of different way cardinalities, seems desirable and feasible. Most
importantly, however, the efficiency of search must be further improved in order to be ap-
plied to large datasets in a batchmode. One idea is to use geometric information to expedite
search, and use affordance-based search only on appropriate geometric candidates.
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