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Abstract: GIScience and spatial information contributions to indoor mapping and naviga-
tion are many, but there remain significant challenges. Indoor environments are where peo-
ple spend most of their time, socializing, working, learning, exercising, etc. During times of
emergencies, disease outbreaks, and crises, indoor management and planning must be pre-
pared to handle such events, yet doing so is often hindered by a lack of supporting spatial
information and appropriate analytics. This paper focuses on COVID-19 mitigation mea-
sures to reduce disease transmission through physical distancing in indoor spaces, such as
classrooms, offices, dining commons, restaurants, and entertainment venues. Geographical
data to support indoor environments is discussed, particularly issues of acquisition, spatial
data uncertainty, and implications for spatial analytics. Planning for classroom physical
distancing on a university campus highlights capabilities, issues, and challenges, with a
comparison made between previous studies relying on architectural data and more precise
information obtained using LiDAR.
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1 Introduction

Indoor mapping and navigation are of critical importance. Not only do people largely in-
habit and dwell inside of building structures the majority of each day, but supporting indi-
viduals with disabilities and mobility needs (as well as adhering to government-mandated
requirements such as the Americans with Disabilities Act, see [29]), facilities management,
efficient routing, evacuation, demand for location-based service, etc. necessitate methods
and associated spatial data to make indoor mapping and navigation a practical reality.

c© by the author(s) Licensed under Creative Commons Attribution 3.0 License CC©



126 MURRAY, BAIK, MALAK

While advances over the past two decades have been remarkable, it is generally the case
that needed indoor base data indicating walls, doorways, windows, restrooms, elevators,
stairwells, and other permanent features is generally lacking for various reasons. This is
in part why indoor mapping and navigation are seen as major growth areas in the coming
years, with approaches for generating and improving indoor data among the significant
challenges to be addressed [4, 23, 29].

There are a number of recent efforts and examples on the indoor mapping front that
highlight potential and advances to date. In recent years, significant investments have been
made in indoor mapping and navigation, marking a notable shift from the traditional focus
of online mapping and navigation services that primarily concentrate on outdoor elements,
such as roads, buildings and transportation. As an example, Apple Indoor Maps and Posi-
tioning has been behind building interior data creation and tracking capabilities for a wide
array of commercial endeavors [18]. One area is associated with airports across the United
States and abroad. San Francisco International Airport and London Heathrow are repre-
sentative examples. Shopping malls and stores too have undergone much investment in
data creation and tracking, particularly those owned by the Westfield Group, Home Depot,
etc. The Westfield San Francisco Centre is a good example of this. Esri has also invested
in indoor positioning systems and indoor tracking services. The Indoor GIS by Esri ser-
vice helps to capture the consumer experience in 3-D, providing accurate indoor location
tracking and supporting geodatabases of interaction. The features provided have enhanced
business analysis, space planning, and product display. What makes indoor mapping and
navigation challenging? GPS and remote sensing technology, including Global Navigation
Satellite Systems (GNSS), have made outdoor data collection relatively easy. GPS receivers
are available through cellular phones, watches, automobiles, etc., enabling the creation of
spatial information and movement tracking of objects. Precise geographic location can
be established and collected using total stations, GPS, imagery, LiDAR, etc., in outdoor
spaces [3, 14, 18, 30]. Unfortunately, this is not the case inside building structures, as GPS
signals cannot generally be acquired, hindering the precise measurement and tracking of
geographic location. Concerns revolve around the need for additional effort and the uti-
lization of new technologies to acquire indoor data. Currently, a considerable amount of
indoor data exists as architectural drawings that lack accurate spatial scale or location infor-
mation, posing a challenge in seamlessly integrating this data into mapping and navigation
systems.

The COVID-19 pandemic has also heightened the need for indoor mapping capabili-
ties. As is well known at this stage, COVID-19 is a respiratory illness that spreads by way
of person-to-person contact, via droplets and aerosols, with indoor environments being
particularly susceptible to disease spread due to people in close proximity to each other, an
inability to avoid indirect contact, poor ventilation, and other reasons. Analysis, tracking,
and planning in most indoor environments to support pandemic response, however, was
hindered by a lack of indoor spatial data as well as supporting spatial analytic capabilities.
It is well established that various mitigation strategies are effective in reducing the spread
of this airborne disease, including masking and washing hands, but also reducing close
contact with others. In particular, physical distancing is critical in places where individuals
are forced to congregate, such as classrooms, offices, dining commons, restaurants, enter-
tainment venues, etc. Like many business, education, and service providers, the longer-
term strategy and response at the University of California at Santa Barbara sought ways to
continue operations under conditions where physical distancing could limit the spread of

www.josis.org

http://www.josis.org


INDOOR SPATIAL INFORMATION 127

the disease. The plan included evaluation, assessment, and design of classroom seating ar-
rangements where physical distancing would be ensured. However, the planning process
had to contend with limited indoor data, largely in the form of architectural drawings, and
manual approaches for seating assignment.

This paper discusses spatial information implications of indoor planning efforts to sup-
port COVID-19 physical distancing in classrooms. The next section offers background to
the various aspects of indoor mapping, geographical data acquisition, spatial data uncer-
tainty, and spatial analytics. The planning needs for classroom physical distancing are
then detailed. In particular, the use of architectural drawings in previous research for un-
derlying data is considered along with more precise spatial information derived using Li-
DAR. Methods to support physical distancing evaluation are then reviewed along with
approaches to assess geographic uncertainty. Assessment involving classroom planning
at the University of California at Santa Barbara is then offered, including comparison of
findings derived using architectural drawings and more precise spatial information. The
paper ends with discussion and concluding comments.

2 Background

The literature of particular relevance to this research includes work in indoor mapping,
geographical data acquisition, spatial data uncertainty, and spatial analytics. Indoor map-
ping, as well as indoor navigation, has been adopted here to convey the essence of un-
derstanding and movement within indoor spaces. Various naming conventions can be
observed, including indoor GIS and building information modeling, among others (see
[3, 22, 31]). A recent overview of work in this area can be found in Teixeira et al. [24], high-
lighting categories of management, geospatial analysis, positioning, data acquisition, and
spatial data models for indoor environments. Chen and Chen [4] explain that within build-
ings there are many complications for spatial location technology, including the reflection,
refraction and/or scattering of radio waves and disruption of signal propagation due to
obstacles, walls and construction materials, somewhat in contrast to outdoors where GPS
based technologies make precision location positioning possible. Further, frequent object
location changes and constant pedestrian movements also make indoor environments chal-
lenging. A wide range of technology can and has been used to support indoor positioning,
including WLAN / WiFi, Bluetooth, RFID tags, and other sensors, particularly cameras and
CCTV (see [2,4,20]). Chen and Chen [4] focus on smartphone technologies given the range
of sensors they contain. However, general positioning does assume that underlying base
information does exist, for which relative movement and position within a building can
be established. Where does this base geographic indoor information come from? As is the
case for GIS in outdoor environments (see [3, 14]), one can rely on a range of methods for
indoor data creation, including surveying, LiDAR, and conversion of maps, photographs,
and other sources through some digitization process (see [2, 4, 9, 18, 19]). However, this is
complicated for indoor environments due to the inability to establish accurate relative ge-
ographic position within a building. As a result, there is generally minimal, if any, existing
data sources to carry out mapping and/or analysis in indoor environments.

Given a lack of base data sources for indoor environments or accessible methods for
data creation, relied upon information may be inaccurate or incomplete in many ways.
Geographic data uncertainty results from a host of issues, including sampling bias and/or
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omission, abstraction, attribute measurement error, locational imprecision, etc. These is-
sues and others have long been recognized as challenges for achieving high levels of data
quality, with Goodchild and Gopal [8] offering an early overview. A fairly comprehensive
discussion of uncertainty can be found in Longley et al. [14]. A case study in positional
accuracy is carried out by Lawford [12]. Recent reflections are offered on uncertainty in
spatial data by Li et al. [13] and GIScience by Goodchild [7], but more generally the Inter-
national Organization for Standardization (ISO) defines aspects of data quality, how to reg-
ister data quality, and procedures for evaluating geographic data through ISO 19157:2013
(geographic information – data quality) [10]. For indoor mapping and navigation, there is
much contributing to potential uncertainty, yet perhaps less margin for acceptable errors,
depending on intended usage and context.

Spatial analytics are particularly critical for indoor mapping and navigation, especially
in the context of pandemic response and the support of physical distancing mitigation ef-
forts. The COVID-19 years have seen much interest in spatial analytics that specifically
address physical distancing planning. Murray [15] and Kudela [11] were among the first
to recognize that spatial optimization could aid planning along these lines, assuming that
underlying indoor data was available. A number of related spatial modeling efforts have
followed (see [1, 5, 6, 17, 21, 28]). In the context of pandemic mitigation, an important area
of spatial analytics work recognizes that many modeling approaches are sensitive to geo-
graphic scale, unit definition and data uncertainty [16, 25]. The significance of this is that
data and methods must undergo systematic evaluation to understand the extent to which
potential sensitivities may impact analytical insights, as well as the management, planning,
and policy implications. Thus, an open research question is whether methods supporting
physical distancing evaluation are sufficiently reliable, particularly given the reliance on
architectural drawings to support indoor planning efforts.

3 Spatial separation

Pandemic oriented physical distancing planning for classrooms at the University of Cal-
ifornia, Santa Barbara was undertaken by the Instructional and Study Space Workgroup
convened by the Executive Vice Chancellor [27] in the early stages of COVID-19 lockdowns.
Accounting for only two dimensions, detailed seating configurations were derived for each
classroom in anticipation of in person learning, with assumed minimum physical distanc-
ing requirements of 2.62 meters (or 8.58 feet) between the center of seated individuals. This
represents the recommended distancing of 1.83 meters (or 6 feet) by health agencies plus
0.79 meters (or 2.58 feet) to account for the size and seat occupancy of an individual.

The physical distancing evaluation and analysis of indoor classroom environments re-
lied on paper / digital images that are effectively architectural drawings. Detailed ge-
ographic information exists for building footprints on campus, as do AutoCAD files of
building footprints, walls, doorways, etc. for interior spaces. Unfortunately, no digital
information exists on fixed seating locations in classrooms. Thus, the analysis and plan-
ning relied on architectural drawings, such as the one shown in Figure 1, which is only
2-dimensional and necessary ignores seat elevation, if any.

A member(s) of the Workgroup undertook trial-and-error analysis based upon assumed
scale and derived distance to estimate maximal seat occupancy for each classroom on cam-
pus. This served as classroom capacities for individual course enrollment. Of course, the
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above discussion of geographic data quality along with the trial-and-error process to esti-
mate room capacity suggest the potential for a number of sources of uncertainty. At the
top of the list is that architectural drawings, like maps, are artistic in nature and may lack
geographic precision compared to actual seating size, positioning, and arrangement. The
supporting base data for indoor mapping and navigation in this case is much like the early
decades of GIS that relied heavily on the digitization of maps, which necessitates close
scrutiny of data quality and assessment of associated spatial analytical findings.

Figure 1: Buchanan Hall 1940.

4 Spatial analytics

A preliminary assessment of a major lecture hall (classroom) at the University of California,
Santa Barbara with respect to physical distancing planning was reported in Murray [17],
seating 867 people for large classes, concerts, and public events. Of note was that capacity
assessment could actually be viewed as a spatial optimization problem, seeking the max-
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imum number of seats that could be occupied without violating the physical distancing
requirement of 2.62 meters. It was demonstrated that maximum seating capacities could
be structured as an integer program and subsequently solved using a commercial optimiza-
tion solver.

Consider the following notation:
j = index of potential seats (entire set J)
βj = benefit for selecting seat j
S = required separation distance between selected seats
dji = distance between seat j and seat i
Ωj = set of seats too close to seat j, {i ∈ J |dji ≤ S}

Xj =

{
1 if seat j is selected
0 otherwise

The notation indicates coefficients and parameters, all known or derived in advance,
generally through the use and support of GIS. In addition, the decision variables, or un-
knowns, reflect the intention of the model to select seats to be occupied.

The spatial optimization model for determining maximum seating occupancy is as fol-
lows:

Maximize
∑
j∈J

βjXj (1)

Subject to |Ωj |Xj +
∑
i∈Ωj

Xi ≤ |Ωj | ∀j ∈ J (2)

Xj ∈ {0, 1} ∀j ∈ J (3)

Objective (1) indicates the intent to maximize the total benefit of selected seats. The
use of βj allows for quality characteristics to be taken into account for each seat j, such
as better visibility, proximity to aisles and exits, etc. Constraints (2) impose the spatial
restriction between selected seats. Binary conditions are imposed in constraints (3).

It is also possible to use spatial optimization for determining minimum seating capacity,
where no additional seats could be occupied. A model to support this is as follows:

Minimize
∑
j∈J

βjXj (4)

Subject to |Ωj |Xj +
∑
i∈Ωj

Xi ≤ |Ωj | ∀j ∈ J (5)

Xj +
∑
i∈Ωj

Xi ≥ 1 ∀j ∈ J (6)

Xj ∈ {0, 1} ∀j ∈ J (7)

Objective (4) indicates the intent to minimize the total benefit of selected seats. Con-
straints (5) impose the spatial restriction between selected seats. Constraints (6) require
a seat to be selected if it is not restricted by other seat selections. Binary conditions are
imposed in constraints (3).

The maximum and minimum capacities provide upper and lower bounds on seating
possible under conditions of physical distancing. However, the models necessarily assume
that underlying spatial information on fixed seating locations exists and is accurate and

www.josis.org

http://www.josis.org


INDOOR SPATIAL INFORMATION 131

without error. If there is any data uncertainty, the associated spatial analysis using (1)-(3)
or (4)-(7) may be problematic or misleading. Formal assessment of geographic data quality
is clearly important, as is subsequent analysis if any error is suspected or detected.

A prominent source of indoor data in the early days of the COVID-19 pandemic, as
noted above, relied on architectural drawings given the need for quick decision-making.
Subsequent analysis conducted by Murray [15], as an example, georeferenced architectural
drawings then digitized seat position from this data source (see also [17]). Assessment of
data uncertainty is possible only with accurate and precise base data. Fortunately, accurate
indoor seating position data can be derived through indoor 3-D scanning, among others,
though it may be costly and time-consuming to acquire. Based on the scan results, the
position of each seat can be digitized. Thus, points can be regarded as the truth, accurately
representing the actual seat position. Methodologically, assessment of data quality requires
that any two (or more) geographic data layers have a standard referencing system, so that
object location is comparable. This may be achieved through the transformation of one
data layer to sync with the coordinate referencing of the other layer.

Given a desired coordinate referencing system (u, v), the existing (or created) data layer
in another coordinate referencing system (φ, λ) must be converted, or transformed. Thus,
one seeks functions u = f(φ, λ) and v = g(φ, λ) to accomplish this process. The 2-D affine
transformation is [14, 26]:

u = α0 + α1φ+ α2λ (8)
v = α3 + α4φ+ α5λ (9)

where α0, α1, α2, α3, α4 and α5 are transformation parameters that must be known or
estimated to best match coincident points in the two referencing systems. With known or
estimated parameters, one can then derive the location in (u, v) for any point (φj , λj) using
(8) and (9).

The modeling and assessment framework is given in Figure 2 focused on data uncer-
tainty and implications for maximum and minimum seating capacities under physical dis-
tancing. The first major component in Figure 2 is to acquire indoor data. In this research,
there are two sources, or layers. One is the georeferenced architectural drawings, and the
other is a 3-D scan (LiDAR) projected to 2-D and viewed as the truth. The second major
component in Figure 2 is to digitize seat position for each data source. The third major
component in Figure 2 is coordinate system synchronization, where the 2-D georeferenced
architectural drawing undergoes transformation to be consistent with the actual seat loca-
tion layer. Figure 2 then examines data uncertainty, comparing the seat location extracted
from the architectural drawing,

(
u′j , v

′
j

)
, to the actual location

(
u∗j , v

∗
j

)
. Total resulting error

in terms of distance can be summarized as:

∑
j∈J

√(
u∗j − u′j

)2
+
(
v∗j − v′j

)2 (10)

Average error distance is therefore:

1

|J |
∑
j∈J

√(
u∗j − u′j

)2
+
(
v∗j − v′j

)2 (11)
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If the error is unacceptable, then adjustments to the input data source could be consid-
ered, if this is possible. The final major component in Figure 2 is assessment of maximum
and minimum seating capacities using (1)-(3) and (4)-(7).

Figure 2: Framework for pandemic response physical distancing evaluation and planning.

5 Application results

In order to demonstrate the challenges of indoor mapping and navigation as well as sup-
port physical distancing planning efforts, a classroom on the University of California at
Santa Barbara campus, 1940 Buchanan Hall (149 seats), is considered. Seating capacity
analyses are carried out on a Windows 10 AMD Ryzen CPU 3600 with 64 GB RAM desktop
computer. The estimated seat locations are acquired from the architectural drawing shown
in Figure 1. In order to achieve precise scale matching and ensure the highest level of
locational accuracy possible, the AutoCAD file containing indoor walls and doors shown
in Figure 3 was used. The AutoCAD file was georeferenced using the building footprint
represented by a red-dotted line as a reference, with the architectural drawing georectified
based on the shared wall structures between the two layers. The seat locations derived
from the architectural drawing are based on the state plane coordinate system (2-D), as
they were georeferenced in accordance with the building footprint. Again, this is based on
the process undertaken by University of California at Santa Barbara [27]. The actual seat
locations are derived using a RIEGL terrestrial laser scanner, LMS-Z420i. The scanner has
a measuring range of 2 to 1000 meters and a geographic accuracy of 1 centimeter. The scan
results are converted into LiDAR point clouds, and are shown in Figure 4. 1,997,924 3-D
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points were retrieved from the classroom space with a floor area of 155.47 square meters,
ranging in height (high of 3.15 m and low of 1.5 m). From the point cloud data, the center
position of the upper back of each chair was digitized. Again, these points are regarded as
the actual seat location.

Figure 3: Georeferenced AutoCAD file and architectural drawing.

Following transformation, the two indoor data sources can be compared, as shown in
Figure 5. The overlay illustrates that the architectural drawing does not represent the actual
location of seats particularly well. The difference in seat position sums to 96.5 meters.
Given that there are 149 seats, the architectural drawing has an average positional error of
0.65 meters per seat with an observed maximum of 1.19 meters.

An important question is whether such error impacts subsequent spatial analysis if the
architectural drawing data layer is relied upon. To assess this in the context of planning
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Figure 4: Point cloud from the 3-D scan of 1940 Buchanan Hall.

for physical distancing, the maximum, (1)-(3), and minimum, (4)-(7), room capacity spatial
optimization models were implemented in a Jupiter Notebook (Python) and solved using
GUROBI (version 9.5). All seats were treated as having equal benefit, though the model
could readily accommodate heterogeneous benefit values as well. Time to set up and solve
each model was less than 1 second.

Figure 6 shows the seating configurations for achieving the maximum room capacity
in Buchanan 1940 under the given physical distancing constraints using the two differ-
ent indoor data sources. Figure 6a demonstrates the configuration using the architectural
drawing seat locations, while Figure 6b shows the configuration for the actual seat po-
sitions. Since the physical distancing standard is 2.62 meters, a buffer of 1.31 meters is
drawn around each selected seat. An overlap of the buffers would signify that the seats
are violating distancing standards. Evident in Figure 6 is that the maximum configurations
for both indoor data sources are feasible with respect to their underlying data. For the
architectural drawing, the maximum seating capacity is suggested to be 20 seats, while the
actual maximum capacity under physical distancing constraints is 15 seats for this class-
room. Thus, the error in seat location does impact the derived maximum seating capacity
under physical distancing. To visualize this more explicitly, Figure 7 shows what would
happen using the architectural drawing to derive maximum capacity seating, where the
selected seat locations would actually violate the physical distancing requirement in the
classroom in practice. As noted above, this is evident when there are overlapping 1.31
buffers, reflecting that the two or more selected seats are actually separated by less than
the required physical distancing standard of 2.62 m. Four pairs of seats would violate this
constraint, making the proposed configuration using architectural drawing data infeasible
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Figure 5: Comparing seat location data sources.

in practice. The true maximum capacity is 15, as shown in Figure 6b, so 20 is simply not
possible without violating the physical distancing standard.

Figure 6: Maximum seating capacity possible under physical distancing.

Assessment of minimum seating capacity is offered in Figure 8, where the worst-case
configuration with no additional seating possible is derived. Figure 8a demonstrates the
configuration for the architectural drawing data source, while Figure 8b shows the con-
figuration for the actual seat locations. A 2.62 meter buffer is shown in this case for each
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Figure 7: Actual seat location (LiDAR) that implements selected seats from architectural
drawing.

selected seat, reflecting the physical distancing standard. A feasible solution is one where
no available seat is outside of the buffers. Of concern is that the minimum seating configu-
ration of 10 for the architectural drawing approximation is not actually the true minimum
of 7 found using the LiDAR actual seat locations. Again, the error in seat location using the
architectural drawing does impact the derived minimum seating capacity under physical
distancing. Figure 9 shows the result of applying the minimum capacity seating configura-
tion derived from actual seat location to the architectural drawing source data. A buffer of
2.62 meters is drawn from each selected seat to demonstrate the physical distancing stan-
dards. If an available seat is uncovered by buffers, then it violates constraints (6) requiring
that all available seats be utilized. This would make the solution infeasible. Figure 9 shows
there are eight seats uncovered by the buffers, so the lower bound on seating capacity is
incorrect using the architectural drawing seat locations.

6 Discussion

The analysis reported in the previous section relied on a 2-D representation of space. This
was assumed given the original analysis based on the use of 2-D architectural drawings
to identify seat locations. The LiDAR scan generates a 3-D point cloud from which seat
locations could be identified manually. If the analysis is carried out assuming a 3-D envi-
ronment, this could have implications when the physical distancing standard is considered.
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Figure 8: Minimum seating capacity possible under physical distancing.

Figure 9: Architectural drawing seat locations depicting selected seats using actual seat
locations.

Given this the analysis was repeated using the 3-D representation of seat locations, account-
ing for elevation in the evaluation of distance and proximity. The maximum capacity using
the 3-D representation was 15 seats, and the minimum capacity was 7 seats, consistent with
the 2-D analysis. The maximum seating configuration for the 3-D case is shown in Figure
10, also including the LiDAR point cloud scan showing seat locations. While it would not
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generally be the case, the 2-D and 3-D analysis are the same. This may be due to geographic
scale as well as seat elevation changing very gradually within the classroom.

Figure 10: Optimal seat location taking into account 3-dimensions, showing both the Li-
DAR point cloud as well as the spatial separation standard.

Base data to support indoor mapping and navigation is challenging to obtain for a num-
ber of reasons. While accurate maps of building interiors are critical, finding precise indoor
data is difficult, and methods to create such data are not generally accessible. Further, main-
taining and keeping indoor mapping up to date is also challenging. Reliance on drawings,
sketches and illustrations for indoor environments is likely to be problematic in various
ways, with spatial precision and accuracy clearly evident in the analysis reported in this
paper. Methods do exist for generating precise and accurate data for indoor environments,
such as laser scanners [9] and WiFi [19]. 360-degree cameras too can be exploited to create
a 3-D digital twin out of multiple 2-D panoramas, which has been explored in computer
vision. Modern cellular phones even have the technology to approximate LiDAR sensing.
Nevertheless, generating accurate indoor data that can be leveraged for further analysis is
costly and time-consuming. A 3-D scan by itself is not sufficient for most indoor mapping
and navigation contexts and often requires proper georeferencing, transformation, data
merge, and/or digitization, along with object detection and representation.

The conducted indoor spatial data uncertainty analysis holds significant potential be-
yond COVID-19 mitigation, with applications in diverse areas such as wireless equipment
deployment, facility service site selection, emergency response planning, indoor naviga-
tion, retail and marketing analysis, facilities management, augmented reality, energy ef-
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ficiency optimization and security and surveillance systems. By addressing uncertain-
ties in indoor data, these applications can benefit from improved accuracy, efficiency and
decision-making, leading to enhanced user experiences, resource optimization and in-
creased safety and security measures.

7 Conclusions

Indoor environments are fundamentally important to humans. Spatial information science
has much to offer indoor mapping and navigation, with many notable contributions to
date but many challenges remaining. Monitoring, analysis, planning and management of
indoor environments are hindered by a lack of supporting spatial information and analyt-
ics. An often relied upon source of spatial information is maps and architectural drawings
of indoor spaces. However, such information lacks precision and accuracy to support most
monitoring, analysis, planning, and management contexts. As highlighted in this paper,
data uncertainty leads to errors, and such errors impact spatial analyses, planning and
management processes. Public health implications were considered in this paper, focus-
ing on physical distancing mitigation in indoor spaces, such as classrooms, offices, dining
commons, restaurants, and entertainment venues. There is a clear need for highly accu-
rate indoor geospatial information, and there will no doubt be increasing needs for more
broadly conceived indoor mapping and navigation contexts in the future.
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