
JOURNAL OF SPATIAL INFORMATION SCIENCE

Number 7 (2013), pp. 45–75 doi:10.5311/JOSIS.2013.7.132

RESEARCH ARTICLE

Multi-scale window specification
over streaming trajectories

Kostas Patroumpas
School of Electrical and Computer Engineering
National Technical University of Athens, Hellas

Received: March 14, 2013; returned: June 20, 2013; revised: September 19, 2013; accepted: November 11, 2013.

Abstract: Enormous amounts of positional information are collected by monitoring appli-
cations in domains such as fleet management, cargo transport, wildlife protection, etc. With
the advent of modern location-based services, processing such data mostly focuses on pro-
viding real-time response to a variety of user requests in continuous and scalable fashion.
An important class of such queries concerns evolving trajectories that continuously trace
the streaming locations of moving objects, like GPS-equipped vehicles, commodities with
RFID’s, people with smartphones etc. In this work, we propose an advanced windowing
operator that enables online, incremental examination of recent motion paths at multiple
resolutions for numerous point entities. When applied against incoming positions, this win-
dow can abstract trajectories at coarser representations towards the past, while retaining
progressively finer features closer to the present. We explain the semantics of such multi-
scale sliding windows through parameterized functions that reflect the sequential nature
of trajectories and can effectively capture their spatiotemporal properties. Such window
specification goes beyond its usual role for non-blocking processing of multiple concurrent
queries. Actually, it can offer concrete subsequences from each trajectory, thus preserving
continuity in time and contiguity in space along the respective segments. Further, we sug-
gest language extensions in order to express characteristic spatiotemporal queries using
windows. Finally, we discuss algorithms for nested maintenance of multi-scale windows
and evaluate their efficiency against streaming positional data, offering empirical evidence
of their benefits to online trajectory processing.

Keywords: geostreaming, moving objects, multi-resolution, trajectories, windows

c© by the author(s) Licensed under Creative Commons Attribution 3.0 License CC©

46 PATROUMPAS

1 Introduction

The increasing popularity of location-based services due to proliferation of smartphones
and positioning devices (GPS, RFID, GSM), has significant impact on data management.
Apart from various types of information exchanged through service providers (e.g., text,
imagery, video, etc.), positional updates incur a considerable part of the network load.
Indeed, it becomes harder to sustain massive volumes of rapidly accumulating traces from
a multitude of vehicles, ships, containers, etc. Most processing techniques (e.g., [10, 13,
17]) usually focus on spatial relationships among current positions of moving objects; for
instance, reporting which people are now moving in a specific area (i.e., a continuous range
query), or finding friends closest to the current location of a mobile user (i.e., a continuous
k-nearest neighbor search).

In contrast, the significance of dynamically updated trajectories is rather overlooked.
Luckily, continuous tracking of mobile devices offers an evolving trace of their motion
across time. As numerous objects relay their locations frequently, voluminous positional
information is being accumulated in a streaming fashion [24]. But with real-time process-
ing, it is hardly feasible to keep in main memory the entire, ever-growing motion path of
every object. So, most user requests focus on the latest portion of data through repeatedly
refreshed sliding windows [14, 22, 27] that span a recent time interval. For instance, only
data received over the past hour are probed in order to meet real-time deadlines. As fresh
positions keep arriving, such evaluation should be repeatedly applied in order to provide
up-to-date, incremental response.

In such a geostreaming context, the relative weight of each isolated position in a trajectory
is inherently time-decaying. When it first arrives, a position is most valuable, as it indicates
the whereabouts of a moving object (e.g., a person, a vehicle or a container). But as time
goes by, its importance is steadily diminishing, until it eventually becomes obsolete and
practically negligible in the long motion path of that object. Taking inspiration from such an
“amnesic” behavior [24], in this paper we introduce the notion of multi-scale sliding windows
against trajectory streams. Instead of just restricting the focus on recent past using temporal
constraints, we prescribe varying degrees of approximation for diverse portions of each
trajectory. In a sense, we suggest a spatiotemporal analogue of the well-known concept of
scale in cartography.

Towards this goal, we extend our previous work on multi-granular windows at varying
levels of detail [21], and we exploit spatiotemporal properties inherent in evolving trajec-
tories. We deem that windowing can effectively retain several, gradually coarser represen-
tations of each object’s movement over greater time horizons towards the past; in return,
higher precision should be reserved for the most recent segments. This can be achieved
through diverse scaled representations per time horizon, in order to obtain increasingly gen-
eralized, yet always connected motion paths. Thanks to scaling, traces of any object consist
of a similar amount of locations per time period, so they are lightweight and comparable
irrespectively of their reporting frequency. Consider an application for fleet management,
which monitors delivery trucks for a logistics firm. Typically, finest “zigzag” details of each
itinerary usually matter for the latest 15 minutes. Suppressing most of them could still re-
liably convey motion characteristics over the past hour, whereas relatively few waypoints
per vehicle suffice to give its general course today. Hence, this novel operator acts as an
online simplifier per trajectory and constantly offers multiple views at varying resolutions
over the motion history of objects. To reduce maintenance cost, a view at a given reso-

www.josis.org

http://www.josis.org

MULTI-SCALE WINDOW SPECIFICATION OVER STREAMING TRAJECTORIES 47

lution can get incrementally updated from the more detailed ones, and not directly from
the original sequence (with the exception of the finest view, of course). In a nutshell, the
underlying semantics of the proposed window is “drop detail with age.” This data reduc-
tion paradigm exploits both spatial and temporal features per trajectory; such windows are
genuinely sliding with time, but they also employ spatiotemporal criteria for determining
qualifying positional updates.

In practice, this idea may be proven advantageous for applications like fleet manage-
ment, traffic surveillance, wildlife observation, merchandise monitoring, maritime control,
soldier tracking in battlefields etc. Typical operations include:

• Trajectory filtering: Evaluation of range or k-NN search requests can be boosted by ex-
amining contemporaneous, lightweight portions of trajectories at comparable scales
instead of the detailed, time-varying original traces. In line with the “filter & re-
finement” paradigm [26], these reduced trajectories may constitute an index for the
filtering phase in order to prune irrelevant candidates.

• Ageing trajectory synopses: Each object’s course can be smoothly updated with time
and suitably compressed with age to offer a reliable approximation. In essence, drop-
ping unnecessary details towards the past can actually highlight the most salient
spatiotemporal features. Compression is less lossy for recent traces so as to afford
more accurate answers to related queries.

• Efficient motion mining: Identifying recent trends at varying resolutions can effectively
expose important—or even latent—movement patterns that might be difficult to de-
tect in rapidly accumulating data. For instance, changes in traffic flows across the
road network can be instantly outlined from reduced representations without resort-
ing to an expensive inspection of the exact routes.

• Online multi-grained aggregates: Crucial spatiotemporal measurements, like heading,
speed, travel time, area of coverage, etc. [12] can be calculated per trajectory at sev-
eral time horizons and resolutions. For instance, it makes sense to monitor average
speed of each vehicle over the past minute, quarter, and hour at judiciously scaled
simplifications of their traces so as to meet online expectations.

• Advanced visualization: Map rendering of trajectory features at diverse zoom levels can
provide localized or personalized views of important phenomena. Imagine a traffic
controller, who can readily overview vehicle circulation in the city, but can occasion-
ally zoom into a congested junction to check for long queues. Further, customized
symbology and suitable annotation can provide the means for versatile portrayal and
dissemination through multi-modal, interactive maps.

This paper is an extended and revised version of [20]. Compared to that initial ap-
proach, it offers a detailed discussion of windowing semantics and a more careful exami-
nation of language constructs that can potentially assist in query formulation. In addition,
a novel algorithmic framework has been developed, employing three alternative strategies
for incremental window maintenance over trajectories. This is not just a proof of concept,
since these techniques have been validated empirically, demonstrating significant advan-
tages in terms of real-time response and reliable approximation. To the best of our knowl-
edge, this is the first attempt to introduce composite windows over streaming trajectories
with the following contributions:

JOSIS, Number 7 (2013), pp. 45–75

48 PATROUMPAS

(i) We advocate for the use of multi-scale sliding windows as a means of capturing es-
sential trajectory features from an evolving positional stream, and we discuss their
parameterized semantics in space and time (Section 3).

(ii) We develop maintenance methods to ensure cohesion of trajectory segments using a
series of common articulation points that leave no gaps between trajectory features
compressed at varying degrees in successive window levels (Section 4).

(iii) We indicate that typical spatiotemporal predicates and functions are directly applica-
ble to these alternate, compressed representations. In addition, we demonstrate the
expressiveness of multi-scale windowing through SQL-like statements for character-
istic continuous queries involving trajectories (Section 5).

(iv) We conduct a comprehensive experimental study against synthetic geostreaming
data in order to evaluate performance, accuracy, and robustness of the applied multi-
resolution approximation (Section 6).

2 Related work

As the proposed framework injects ideas from window-based stream processing and multi-
granular semantics into trajectory management, related work is reviewed next.

2.1 Windows over data streams

Continuous query execution has been established as the most renowned paradigm for pro-
cessing transient, fluctuating, and possibly unbounded data streams [1, 7, 14, 27] in many
modern applications, like telecom fraud detection, financial tickers, or network monitor-
ing. In order to provide real-time response to multiple continuous queries that remain active
for long, most processing engines actually restrict the amount of inspected data into tem-
porary, yet finite chunks. Such windows [2, 3, 22] are declared in user requests against the
stream through properties inherent in the data, mostly using timestamping on incoming
items. Typically, users specify sliding windows, expressing interest in a recent time period ω
(e.g., items received during last 10 minutes), which gets frequently refreshed every β units
(e.g., each minute), so that the window slides forward to keep in pace with newly arrived
tuples. At each iteration, the temporary window state consists of stream tuples within its
current bounds; usually β < ω, so state overlaps occur and successive window instantia-
tions may share tuples.

2.2 Multi-granular semantics

The sliding window paradigm dictates a single timeline of instants at similar detail. Yet,
time dimension naturally adheres to a hierarchical composition of granules, i.e., multiple
levels of resolution with respect to a time domain T. Each granule γk at level k consists
of a fixed number of discrete time instants τ ∈ T. Taking the union of a set of consecutive
granules at level k leads into a greater granule at level k+1, thus iteratively defining several
levels of granularity [5], like seconds, minutes, hours, etc.

Regarding granularity issues in spatiotemporal databases, one approach [19] proposed
functionality to support semantic flexibility of multiple representations and cartographic
flexibility at multiple map scales. Representations of a real-world phenomenon may vary

www.josis.org

http://www.josis.org

MULTI-SCALE WINDOW SPECIFICATION OVER STREAMING TRAJECTORIES 49

according to the chosen perception, i.e., time, scale, user profile, point of view, etc. In
another direction, a formal model for multi-granular types, values, conversions and queries
has been developed in [4], also handling evolutions due to dynamic changes and events.
However, none of these approaches considers management of moving objects and their
trajectories, nor their stream-based processing.

2.3 Trajectory management

Several models and algorithms have been proposed for managing continuously moving ob-
jects in spatiotemporal databases. In [12], an abstract data model and query language were
developed towards implementing a spatiotemporal DBMS extension where trajectories are
considered as moving points. Based on that infrastructure, the SECONDO prototype [11]
offers several built-in and extensible operations.

Besides, a discrete model proposed in [9] decomposes temporal development into frag-
ments, and then uses a simple function to represent movement along every “slice.” For tra-
jectories, each time-slice is a line segment connecting two consecutively recorded locations
of a given object, as a trade-off between performance and positional accuracy. Interpola-
tion can be used to estimate intermediate positions and thus approximately reconstruct an
acceptable trace of the entire movement.

As for trajectory compression, several simplification techniques have been suggested.
Some of them opt for an acceptable approximation in terms of a given error margin, such
as those in [6,15,16]. Besides, the space available for retaining a compressed sequence may
also be crucial in online evaluation schemes [24].

2.4 Stream processing with multi-granular windows

The notion of a multi-level sliding window W was introduced in [21] as a collection of n
time frames (also termed subwindows) at diverse user-defined granularities. Its semantics
allow concurrent evaluation of a single continuous query against chunks of varying size
from a single stream. By this scheme, subwindow Wk〈ωk, βk〉 at level k has its own time
range ωk and slide step βk, effectively adjusting its rear bound tk backwards from current
time τc. As depicted in Figure 1 for a 3-level window over stream S of integer values, the
substate of each frame (the shaded boxes) contains its subordinate ones in time dimension,
while they are all nested under the widest Wn−1 and keeping up with current time τc. A
hierarchy of n subsumed frames can be created when βk−1 ≤ βk and ωk−1 < ωk for each
level k = 1, . . . , n− 1. For smooth transition between successive substates, it is prescribed
that ωk = μk · βk for μk ∈ N

∗, so a given frame Wk consists of a fixed number of primary
granules of size βk units each.

Such a nesting scheme can be maintained online in an incremental fashion. Thanks to
inherent subsumption of window frames, for a subwindow Wk it suffices to retain in a
queue gk only those tuples in interval (tk, tk−1] not already covered by its subordinating
frames. Although a different slide step βk may be specified per level k, window updates
can be managed efficiently. In short, each queue gk can be combined with an auxiliary one
δk to buffer items expiring from its subordinating frame at level k− 1. Figure 2 shows such
a “stairwise” scheme of alternating “buffer” δk and “core” queues gk, which can seamlessly
maintain the overall window state with no duplicates or any tuples lost in transit between
successive levels. Details can be found in [21].

JOSIS, Number 7 (2013), pp. 45–75

50 PATROUMPAS

Figure 1: A 3-level sliding window. Figure 2: Stairwise processing scheme [21].

Emanating from this concept, we build up a new framework for online trajectory man-
agement using windows at multiple temporal extents and spatial resolutions.

3 Semantics of multi-scale windows over trajectories

Without loss of generality, we assume a discrete model with 3-d entities of known identities
moving in two spatial and one temporal dimensions, i.e., point objects (not regions or lines)
moving in a Euclidean plane across time as illustrated in Figure 3a. For a given object oi,
its successive samples are pairs of geographic coordinates (x, y) ∈ R

2. Point locations are
measured at discrete, totally ordered timestamps τ from a given time domain T of primitive
time instants (e.g., seconds). A large number N of objects are being monitored (e.g., tens
of thousands of vehicles), so their relayed locations flow into a central processor as a posi-
tional stream S of timestamped tuples 〈oi, x, y, τ〉. Thus, each trajectory is considered as an
evolving sequence of point samples collected from a given moving source at distinct time
instants (e.g., a GPS reading every few seconds). Each object oi may emit updates at its own
rate of ρi positions/timestamp, which can be time-varying, e.g., less dense samples when
moving straight at steady speed. However, no updates are allowed to already registered
locations, so that coherence is preserved among append-only trajectory segments.

Thanks to monotonicity of time, trajectories always evolve along the temporal dimen-
sion. Thus, the semantics of sliding windows [22] against such positional streams can
abstract the recent portion of trajectories and thus provide dense subsequences without
gaps. For efficiency and robustness, we suggest that continuous queries could be eval-
uated against less detailed representations of objects’ movement, purposely compressed
on-the-fly in an “amnesic” fashion. Overall, the proposed window operator should act as
a filter in two successive stages:

(i) time-based filtering narrows the examined streaming data down to finite chunks of
reported locations at progressively smaller intervals of interest; and

(ii) trajectory-based filtering reconstructs subsequences of locations per object and dynam-
ically applies flexible simplifications at each one of them.

3.1 Time-based filtering

We consider a window W specified by a continuous query as a hierarchy of n subsumable
sliding frames [21] concurrently applied at time τ0 over positional stream S, as in Section
2.4. At level k, frame Wk has a fixed-size temporal range ωk always greater than its sub-
ordinate ones, whereas it moves forward every βk time units (its slide step). In addition,

www.josis.org

http://www.josis.org

MULTI-SCALE WINDOW SPECIFICATION OVER STREAMING TRAJECTORIES 51

it specifies a scale factor σk, as analyzed next. The actual time bounds of frame Wk at any
instant τc ≥ τ0 is its current scope. This smoothly moving, fixed-size interval that covers all
tuples currently in Wk is determined by

scopek(τc) = [max{τ0, τc − λk − ωk + 1}, τc − λk]

where λk = mod(τc − τ0, βk) is a time-varying lag behind current timestamp τc. So, each
frame neither slides forward at each timestamp nor upon arrival of every position, but
discontinuously (once λk = 0) in a deterministic pattern, as discussed in [22]. For instance,
[t1, τc] is the current scope of frame W1 (Figure 1). Note that for each Wk, the rear bound
of its scope is initially τ0, since the subwindow is “half-filled” as long as its actual range is
less than ωk. Later on, the rear bound becomes tk = τc − λk − ωk + 1 > τ0, while the front
bound is at τc − λk. Both bounds slide by βk units in tandem.

Upon sliding, this stage materializes the time-filtered state of respective subwindow Wk

as a set Ck(τc) = {s ∈ S : s.τ ∈ scopek(τc)} of stream items having timestamp τ within
its actual bounds. For the setting in Figure 1, current state C0(τc) of the bottommost frame
contains positions over the past 4 minutes; one level above, C1(τc) gets those received dur-
ing last 8 minutes, and widest frame C2(τc) includes every location over 16 minutes. Note
that each state Ck(τc) provides a batch of scattered point locations, without any associations
regarding their actual sequence as object trajectories.

3.2 Trajectory-based filtering

This stage employs a demultiplexing task at every frame Wk. It partitions tuples from previ-
ously obtained state Ck(τc) into distinct subsequences per object. For each object identifier
oi, this subsequence at level k reconstructs a truncated trajectory; it is called path and con-
sists of time-ordered positions reported from oi within frame Wk. Thus:

pathk(oi) = {s ∈ Ck(τc) : s.oi = oi ∧ (∀s′ ∈ Ck(τc), s′.oi = oi : s.τ < s′.τ ∨ s′.τ < s.τ)}.
For instance, path1 in Figure 3a is the trajectory portion along interval ω1. At time τc a set
of such paths (one per object) is obtained for a period ωk backwards from τc, as prescribed
for the k-th level. But the bulk of this positional data may still be considerable, especially
if windows have wide ranges and many levels. Moreover, evaluation must be repeated for
each new slide, and it certainly demands much processing power.

Hence, we advocate for further reduction of truncated paths. Such a process should take
into account the actual detail of original trajectories, as objects may not necessarily have a
standard reporting frequency. Let |pathk(oi)| denote the number of points reported from
object oi during past interval ωk. As it may occur |pathk(oi)|
 |pathk(oj)| for two distinct
objects oi, oj during the same interval ωk, this compression should yield comparable traces
among trajectories with possibly diverse amounts of relayed samples. Suppose that object
oi has an average rate ρi of locations during period ωk. Then, a total of ρi ·ωk samples have
been recently collected from oi. Ideally, we would like to keep σk · ωk points from each
object, in case that all were sending an update per timestamp. Due to fluctuating rates, the
intended smoothing factor δik for eliminating superfluous samples from this trajectory must
be δik = σk

ρi
. Of course, compression should only be applied if ρi > σk. Otherwise, dropping

original samples is not necessary, and points relayed by oi must be left intact.

Example 1. Let a frame Wk specify 〈ωk = 60 sec, βk = 10 sec, σk = 0.1〉 against trajectories
of two objects. Object o1 has relayed 30 points, but o2 only 12 positions over last ωk = 60

JOSIS, Number 7 (2013), pp. 45–75

52 PATROUMPAS

(a) (b) (c)

Figure 3: Multi-scale sliding window over trajectory: (a) Original sequence. (b) Traces over
diverse time horizons. (c) Unified synopsis composed of non-overlapping paths.

sec, so ρ1 = 0.5 and ρ2 = 0.2 points/sec respectively. According to semantics, reduction
is applied with δ1k = 0.1

0.5 = 0.2, eventually preserving 0.2 · 30 = 6 points from o1. Simi-
larly, δ2k = 0.1

0.2 = 0.5, giving 0.5 · 12 = 6 locations from o2 as well, so scaling returns the
same amount of locations irrespective of the actual rate of updates. Hence, comparable
approximations are obtained from either object for frame Wk .

By fixing a ratio σk < 1 at level k for all trajectories, accuracy of their representation is
restricted at the desired detail. In effect, σk acts as a scale parameter for frame Wk of the
window. It prescribes the maximum degree of detail tolerated amongst its accumulated po-
sitions per path. So, all trajectories get separately smoothed at equivalent approximations,
with several samples intentionally discarded. This does not necessarily mean that a similar
number of locations must be retained per object; depending on the actual motion of a given
oi, less than �|pathk(oi)|· σk

ρi
� points may also constitute a reliable trace, e.g., along a straight

course at steady speed. Naturally, reduction should be intensified for upper frames and less
strong for each subordinate one, hence we establish that 1 ≥ σ0 ≥ σ1 ≥ . . . ≥ σn−1 > 0
among all n levels of window W .

Coupled with parameters for temporal range ωk and slide βk, scale σk intends to pro-
vide an aging-aware simplification of trajectories. We defer discussion of reduction options
for Section 4, as this problem is orthogonal to window semantics. In general, the less the
scaling factor at a given level k, the sparser the locations preserved per trajectory, so the
various σk values per frame actually control the intensity of approximation. Note that each
compressed representation still maintains a cohesive path′

k(oi), thanks to inherent times-
tamp ordering of locations in the subsequence (Figure 3b).

This stage returns a trajectory-filtered state Wk(τc) = {path′
k(oi), ∀i, 1 < i < N} for win-

dow level k at current time τc. It contains a single compressed sequence per object, as
opposed to dispersed positions that a conventional sliding window would return.

www.josis.org

http://www.josis.org

MULTI-SCALE WINDOW SPECIFICATION OVER STREAMING TRAJECTORIES 53

3.3 Discussion

Original trajectory data itself does not become multi-granular (e.g., alternate sequences in
hours or days), and the underlying spatiotemporal model for their representation is kept as
simple as possible. Instead, it is the proposed windowing operator that produces a series
of n temporary datasets of increasing temporal extents and gradually sparser positional
samples. Those repetitively refreshed paths are meant to be utilized primarily in contin-
uous query evaluation, and not necessarily for permanent storage. Parameterizations for
range ωk, slide βk, and scale σk per level k are defined by users in their requests, thereby
controlling the desired precision of response.

Granularities strictly refer to levels of detail for window specification and do not affect
the underlying data model. Of course, relationships may exist among granularities, i.e.,
’finer-than’ and ’coarser-than’ operators defined through inclusion and overlapping [4, 5].
Thanks to such inherent relationships, most granules can be mapped onto the finest one
supported by the model (e.g., seconds), and thus simplify calculations.

Multi-scale windowing should be distinguished from partitioned windows [2], although
they also use attribute values to demultiplex incoming items into disjoint partitions. But
here, an important “path creation” step is involved (Section 3.2), which yields sequential
paths per object. This policy also differs substantially from load shedding techniques that
judiciously drop data points upon arrival [10]. In contrast, all locations get admitted into
the stream database for precessing. Each query may specify diverse time horizons and
scales through windows, eventually discarding superfluous points and producing its own
multi-resolution paths over the recent motion history.

4 Online maintenance of multi-resolution motion paths

Next, we present a scheme for efficiently maintaining trajectory states across multi-scale
frames. We identify crucial properties that compressed sequences should respect, and we
propose three strategies for online evaluation against streaming positions.

4.1 Representation issues for approximated trajectories

The proposed window operator must not solely extract simplified paths per object and
offer multi-scale representations for querying, but should perform this task repetitively
as trajectories evolve. So, processing must be incremental as fresh locations continuously
arrive, and also shared, by potentially exploiting already computed paths.

Towards these intertwined goals, we opt for a scheme that can digest point locations
across many window frames. Since more detailed representations are prescribed for the
narrowest frame (i.e., closest to present), selected point samples per trajectory may be pro-
gressively discarded when adjusting the compressed segments upwards in the window
hierarchy. In effect, fewer and fewer points remain in the coarser frames by eliminating
certain motion details, in accordance with their scale factor σk.

Preservation of certain articulation points per trajectory is our seminal idea for a coordi-
nated maintenance of multiple paths. As shown in Figure 3b, those points signify object
locations at time instants that mark frame boundaries (or samples available closest to that
time, depending on reporting frequency). Such a methodology can promote a fair share of
indicative locations to wider frames by keeping account of such points persistently. Fur-

JOSIS, Number 7 (2013), pp. 45–75

54 PATROUMPAS

ther, it may also yield a unified synopsis of each trajectory, i.e., a cohesive representation
with non-overlapping point sets per level, each spanning consecutive intervals joined at
those articulations (Figure 3c). Apart from expectations for optimized state maintenance,
this scheme may also prove advantageous for a versatile portrayal of trajectories on maps
across multiple scales. In [25], the similar notion of “reference points” was used for data re-
duction specifically in urban movement scenarios. However, it is questionable whether that
compression could be applied in an online fashion, since it draws heavily from geographic
context (e.g., points are always along an underlying transportation network) and spatial
cognition techniques (e.g., wayfinding); none of these assumptions apply for articulation
points.

Retained samples from diverse trajectories may not be necessarily synchronized, i.e.,
measured at identical time instants. Although synchronization facilitates comparison
among trajectories, it might lead to oversimplified paths that could occasionally miss in-
teresting motion details when samples are chosen at a fixed frequency. Instead, samples
should keep each compressed trace as much closer to its original course, chiefly by mini-
mizing approximation error as in trajectory fitting methods [6,16]. Most simplification poli-
cies incur considerable cost in updates, as they have to probe each location more than once;
at best, this cost is O(m logm), where m is the number of examined points. Although such
algorithms can offer good approximation accuracy, they would not be efficient in real-time
evaluation. For checking approximation quality, an error tolerance ε must be also specified,
which is rather difficult to assess beforehand for evolving trajectories from numerous ob-
jects. Another crucial issue for path maintenance is how to attain a specific smoothing fac-
tor per frame Wk . To address these goals, we next propose a processing scheme with three
alternative policies for online multi-scale approximation of trajectories over windows.

4.2 Processing mechanism

We consider a centralized processor where users can register their continuous queries us-
ing multi-scale windows over timestamped positions from N moving objects, as detailed in
Section 3. The maintenance scheme from [21] with a chain of core and buffer nodes can be
adapted to work over spatiotemporal features, so that point selection only occurs at transi-
tions between frames (i.e., in buffer nodes). Involving a small fraction of the accumulated
samples, such a process can suitably drop less important points in an incremental fashion
when aging locations ascend through the stairwise organized frames (Figure 2). Thanks to
inherent nesting, each frame handles trajectory segments not already covered by its subor-
dinate ones. Scaling is achieved through online filtering of locations for object oi expiring
from a frame at level k − 1, so that only a prescribed fraction δik = σk

ρi
of them propagates

up in the window hierarchy.

Example 2. Let a multi-scale window against the trajectory of an object o, which sends its
location at every clock tick, i.e., ρ = 1 position/timestamp. Suppose that at k-th level, this
window specifies a frame Wk ranging over ωk = 20 timestamps and sliding every βk = 4
timestamps, as shown in Figure 4. Scale factor σk = 0.5 signifies that only half of the
transmitted locations should be kept in the compressed path.

Implicitly, such nested processing dictates that fresh locations close to current time τc are
buffered over a period of βk time units at most. When window frame Wk slides forward,
selected positions from object oi get included in its trajectory path at level k. Those filtered

www.josis.org

http://www.josis.org

MULTI-SCALE WINDOW SPECIFICATION OVER STREAMING TRAJECTORIES 55

Figure 4: A window frame Wk specifying 〈ωk = 20, βk = 4, σk = 0.5〉 over a trajectory.

Algorithm 1 Multi-scale windowing over trajectories
1: Procedure Coordinator ({〈ωk, βk, σk〉, k = 0..n-1 }) //Against a n-level windowW
2: Input: Streaming positional updates 〈oi, x, y, τ 〉 from i = 1..N moving objects;
3: Output: A collection C of scaled trajectory paths Si = {s0, ..., sn−1} from each object oi;
4: traji : evolving trajectory of object oi; ρi : reporting rate (positions/timestamp) for oi;
5: Qi : a queue buffer per object oi;
6: while input is not exhausted do
7: Qi.push (〈oi, x, y, τ 〉); // Buffer incoming positions to the corresponding queue
8: if no more positions have arrived for timestamp τ then
9: C ← ∅ ; //Start a new execution cycle to detect trajectory states for all objects

10: for each object oi do
11: traji ← updateTrajectory(oi); //Operation depends on scaling strategy
12: C ← C ∪ adjustFrames(oi, τ) ; //Operation depends on scaling strategy
13: end for
14: end if
15: end while
16: End Procedure

points are the result of scaling applied over candidate positions that had been buffered
upon expiration from level k−1. Simultaneously, positions referring to the oldest period of
βk timestamps along that path are expiring; so they get buffered for subsequent promotion
to level k + 1. Because changes only occur at the front and rear bounds of frames, no ac-
tion should be taken against intermediate points, thus avoiding recomputation of isolated
subwindow states from scratch.

Algorithm 1 outlines the main task running on the server, which provides the overall
state C of trajectory paths from every object. It accumulates incoming locations in a separate
queue Qi per object oi, i = 1..N (line 7). Evaluation takes place in execution cycles, either
at every timestamp or usually depending on elementary sliding step β0 of the window.
After each cycle, every point sequence traji is modified by method updateTrajectory() (line
11). In addition, method adjustFrames() rearranges window states against each trajectory
and a fresh collection of their scaled paths Si = {s0, ..., sn−1} (one per frame) is returned
per object oi (line 12). We stress that the functionality of both methods depends on the
approximation strategy employed for scaling. One option is to randomly take a given
percentage of the buffered samples. Another approach is based on velocity vectors and
aims to pick positions that signify important changes in each object’s course. Yet another

JOSIS, Number 7 (2013), pp. 45–75

56 PATROUMPAS

(a) (b)

Figure 5: Scaling with random sampling: (a) Chosen articulation points and random sam-
ples. (b) Taking samples with probability ≤ δk once frame Wk slides.

possibility is to discard locations that incur the least distortion in trajectory shape. Next,
we analyze each strategy in turn.

4.3 Scaling strategy using random sampling

Typically, systematic sampling involves a random start and then proceeds by selecting ev-
ery m-th element onwards. To imitate window semantics, the starting location may be the
latest position when each frame is evaluated. Then, going backwards in time at level k, we
could keep one sample out of every successive batch of m locations, no matter the actual
frequency ρi of updates received from moving object oi.

In our scenario, we devise an alternative strategy based on random sampling. Clearly,
at every window frame Wk the algorithm needs to examine locations for object oi buffered
every βk timestamps. First, the most fresh location (i.e., the one with timestamp closest to
the front bound of k-th frame) is chosen as articulation point. For each of the remaining
candidates, we toss a coin (independently for each point) and keep locations with proba-
bility δk = σk

ρi
to achieve the desired scaling.

Example 3. For the trajectory in Figure 4, sampling is applied every βk = 4 timestamps.
The shaded box in Figure 5a highlights one such transition (magnified in Figure 5b), which
includes fresh points {B,C,D,E}, plus the insofar latest location A. Since E now becomes
the most recent position, it is by default a new articulation point. After taking probabilities
of the rest, it turns out that only C should be kept, since Pr(C) < δk = σk

ρi
= 0.5. Hence,

the path gets updated with points C and E.

Apart from systematic maintenance of articulation points, note that there is no spatio-
temporal rule for choosing locations, e.g., according to motion patterns as in trajectory
fitting methods [6, 16]. But, as this selection is entirely probabilistic, it absolutely fits for
online processing. Algorithm 2 provides the pseudocode of such a single-pass process.
Indeed, upon admission of a new position from object oi, it can be readily decided whether
to include it or not as a sample in any window frame. Each choice is made according to the
smoothing factor δk = σk

ρi
calculated for level k, and depends on the actual frequency ρi of

positional updates for object oi (line 3).

www.josis.org

http://www.josis.org

MULTI-SCALE WINDOW SPECIFICATION OVER STREAMING TRAJECTORIES 57

Task updateTrajectory() annotates each point with a n-sized bitmap B = bn−1..b1b0, hav-
ing a bit bk per window frame Wk. If a point is randomly selected for the k-th frame, its
bk bit is accordingly set (line 10). Articulation points are temporally closest to frame tran-
sitions (line 7), and thus have their respective bit always set (line 8). If a point is discarded
from the bottommost frame, it is instantly suppressed from all upper levels (lines 12–14).
This “multi-tier” sampling is performed once per incoming point; a location is dropped
from the trajectory representation, unless it participates in at least one frame according to
its associated bitmap B (lines 16–18).

Algorithm 2 Scaling with random sampling
1: Function updateTrajectory (object oi) //Variant for random sampling
2: B ← bn−1..b1b0 : a n-size bitmap (initially all reset) assigned to each location;
3: Update ρi according to positions buffered in Qi;
4: while Qi is not empty do
5: 〈oi, x, y, τ 〉 ← Qi.pop(); //Consume candidate locations in chronological order
6: for each frame Wk, k ∈ {0 .. n-1} do
7: if mod(τ, βk) = 0 then
8: bk ← 1; //Position closest to front bound of this frame becomes articulation point
9: else

10: bk ← tossCoin(σk/ρi); //Decide probabilistically if the point is kept for this frame
11: end if
12: if b0 = 0 then
13: break; //If not included in lowest frame, do not consider this location anymore
14: end if
15: end for
16: if OR(bn−1..b1b0) = 1 then
17: traji ← traji ∪ 〈oi, x, y, τ,B〉; //Only chosen locations get appended into trajectory
18: end if
19: end while
20: return traji;
21: End Function

22: Function adjustFrames (object oi, timestamp τ) //Variant for random sampling
23: Si ← ∅; //Prepare to construct new trajectory state for oi
24: for each frame Wk, k ∈ {0 .. n-1} do
25: if mod(τ, βk) = 0 then
26: trear ← τ − ωk; //Rear bound of k-th frame
27: if k = n-1 then
28: Expunge locations with timestamps < trear from traji;
29: else
30: bk ← 0 for locations with timestamps < trear; //Reset k-th bit to mark expiration
31: end if
32: sk ← { positions of traji within range ωk having bk = 1}; //ordered by timestamp
33: Si ← Si ∪ {sk}; //Append scaled path sk to trajectory-filtered state for oi
34: end if
35: end for
36: return Si; //Report current trajectory-filtered state for object oi
37: End Function

JOSIS, Number 7 (2013), pp. 45–75

58 PATROUMPAS

Once frame Wk slides forward, bit bk should be reset for locations expiring from it. For
a given object oi, method adjustFrames() is called and at each frame transition (line 25) it
checks for points older than the current rear bound of that subwindow (line 26). Those
expiring from the topmost frame are discarded altogether from oi’s trajectory, whereas for
subordinate frames only the respective bits should be reset (lines 27–31). As soon as the
k-th frame is adjusted, scaled path sk is updated to reflect the current sequence of points
participating in Wk . This collection of paths for the n applied subwindows is the current
trajectory-filtered state Si for object oi (lines 32–33).

Clearly, this technique utilizes lightweight bitmaps with almost negligible overhead for
controlling complex window operations over trajectories. Memory footprint for retaining
samples is constant per object, as it depends entirely on window specifications. Since this
is a single-pass process and each point is checked once and for all, the cost is O(1) per
location. This is important in terms of robustness and timeliness, especially when a system
has to monitor numerous objects and to provide answers fast. Nonetheless, this policy
raises subtle issues, as verified in our experiments. Positional updates may be arriving
at fluctuating rates and objects can make arbitrary turns, so this kind of sampling could
often miss important trajectory changes. Since choices obey no deterministic rules, it may
occur that processing two identical trajectories may lead to approximations of equal size,
but with different shapes, as samples are taken at random. Even worse, sampling may
occasionally lead to deviating or largely distorted traces for several objects, with increased
approximation error.

4.4 Scaling strategy based on velocity vectors

Although random sampling can effectively reduce trajectory volumes down to the pre-
scribed sizes per frame, it chooses locations blindly, irrespective of their significance to
objects’ movement. But scaling could take advantage of motion features inherent in such
sequential data. Of them, velocity is the principal magnitude that characterizes how each
object moves, by measuring its actual speed and heading.

Using such velocity vectors is reminiscent of linear dead reckoning techniques [30]. In
that case, a moving object and the server both share a linear prediction function for deter-
mining object’s current position. When an object identifies that its current vector deviates
significantly from the predicted movement, it has to relay a new position and to modify
its linear function accordingly. Yet, dead reckoning assumes that objects carry some pro-
cessing capabilities, whereas it is mostly geared towards communication savings by elim-
inating less important positional updates. Overall, the main concern is data storage with
acceptable accuracy rather than continuous query evaluation, as we consider here using
sliding windows over trajectories.

In our centralized approach, the server maintains velocity vectors per window frame
independently for each monitored object. As illustrated in Figure 6, velocity �vk captures
the general course of object oi within the temporal range of window frame Wk . Each �vk
translates into two real values for average speed and heading during a recent period ωk.
When required, �vk can be readily computed from the two extreme locations prear and pnow
in the retained subsequence. Not surprisingly, �vk is based on articulation points that ex-
plicitly reflect the bounds of respective frame Wk.

For a given object oi, when it comes to choosing samples buffered in a queue Pk for
admission to frame Wk, we opt for a policy that favors selection of positions incurring

www.josis.org

http://www.josis.org

MULTI-SCALE WINDOW SPECIFICATION OVER STREAMING TRAJECTORIES 59

(a) (b)

Figure 6: Scaling using velocity vectors: (a) Retain samples that deviate most from currently
known velocity �vk across window frame Wk. (b) For each floating point in current batch
(the shaded box in (a)), find its velocity vector w.r.t. anchor point A. Then, choose samples
by decreasing difference of their vectors from velocity �vk.

larger deviations from its currently known vector �vk . More specifically, the last location
panchor of object oi within range ωk (just before a slide starts) is fixed as its anchor point for
the k-th frame. Among locations waiting in Pk, the one with the latest timestamp becomes
a new articulation point, as this will be closest to the new front bound of frame Wk after
the slide. For the remaining positions in Pk, each is considered as a floating point pf and
coupled with a velocity vector �vf connecting it with panchor. This temporary �vf signifies the
possible course of oi if pf were chosen as its next sample. In Figure 6b, A is anchor point,
E becomes a new articulation, whereas points B,C, and D are floating. We are interested
in picking up samples that signify substantial diversions from the course predicted by �vk.
In order to quantify such diversions, we measure the vector difference between �vf and �vk,
according to the law of cosines:

γ = ‖�vf − �vk‖ =
√
v2f + v2k − 2vfvk cos θ

where θ is the angle between the two vectors, as depicted in Figure 6b for floating point D.
Thus, it suffices to select points in descending order of their γ values.

The number mk of samples to choose when Wk slides forward and starts consuming
items buffered in Pk is another concern. It is safe to choose mk = �|Pk| · σk

ρi
� locations

at this frame transition, and thus leverage actual arrival rate ρi for object oi against the
desired scale σk. Given that frame Wk consists of a fixed number of primary granules, each
one spanning βk timestamps and providing a scaled subsequence of mk locations, it easily
turns out that Wk would contain no more than �|pathk(oi)| · σk

ρi
� points in total, exactly as

stipulated by scale factor σk.
Note that points assigned as articulations at level k, may later lose this status when pro-

moted upwards. Clearly, each frame chooses suitable articulations among points buffered
for admission to it. The sole purpose of articulations is to guarantee cohesion between
trajectory paths at successive levels in window hierarchy (Figure 3b).

Example 4. For the trajectory in Figure 4, its scaled representation according to velocity
vectors is illustrated in Figure 6. Articulation points are chosen when frame Wk slides
forward. Consider an earlier stage, when the last known point is A and the window is

JOSIS, Number 7 (2013), pp. 45–75

60 PATROUMPAS

ready to choose locations among points buffered in Pk = {B,C,D,E} (inside the shaded
box). Given the window specification and the rate of positional updates, it turns out that
mk = �4 · 0.5

1 �, so two samples should be taken. As shown in detail in Figure 6b, it is
straightforward that E becomes a new articulation; for the rest, velocity vectors are derived
having A as their anchor. Since D is the location with the greater velocity difference, it is
picked as the second sample at this transition.

In terms of actual evaluation, this strategy requires modified versions for methods up-
dateTrajectory() and adjustFrames(), as listed in Algorithm 3. The former is practically re-
duced to expand a trajectory with fresh positions (lines 4–6) and then push them only into
the bottommost frame to refresh its respective path s0 (line 7). This is done on purpose, in
order to avoid duplication of points shared between paths at overlapping window frames.
As for adjustFrames(), it mainly collects in a timestamp-ordered bufferPk all points expiring
from level k and adjusts trajectory path sk accordingly (lines 34–39). The most crucial task
is undertaken by routine promotePoints(), which handles admission of locations at every
window level. As already explained, for each point waiting in queue Pk, it measures its
vector difference γ from the known velocity �vk at level k. In order to judiciously pick points
that may incur larger deviations, candidates are inserted into a max-heap structure Hk by
descending γ values (lines 17–21). Since articulation points are by default chosen accord-
ing to timestamps (line 16), it suffices to repetitively pick locations from Hk, until their total
number reaches the desired mk (line 23). All these locations returned in timestamp order
(line 24) can then be used to update the respective trajectory path sk.

Overall, this strategy integrates spatiotemporal conditions when choosing samples. At
each frame slide, computation of velocity vectors per object costs O(|Pk)| at level k, i.e., is
linear to the number of points considered during this transition. Sorting vector differences
using heaps costs an additional O(|Pk| · log |Pk|) at level k. Despite the widening slides,
buffers at higher window levels contain diminishing fractions of the original locations.
Thanks to the scaling effect of each successive level, fewer and fewer points propagate
across the window hierarchy, thus offering substantial space savings. As verified in the
experimental study, the cost seems tolerable. On the downside, picking locations inde-
pendently on the basis of their deviation from a fixed anchor point, wrongly ignores any
intermediate smaller variations in object’s course that cumulatively might be significant.
In the example of Figure 6, points B and C are dropped in favor of D. However, if C were
selected, the approximate path would be closer to the actual route. In addition, this pol-
icy may end up selecting several consecutive positions on the basis of their high γ values,
even if they occur along a straight line. This drawback clearly shows that the algorithm
disregards the importance of elementary displacements between successive points in the
sequence.

4.5 Scaling strategy using synchronous Euclidean distance

In an attempt to alleviate shortcomings of velocity vectors, we propose another scaling
strategy, which eliminates points that would incur the smallest change in the shape of each
trajectory. Towards this goal, locations with minimal distances from locally approximated
segments are discarded. Similar techniques have also been suggested for managing trajec-
tories in moving object databases. Among them, the spatiotemporal variants of Douglas-
Peucker simplification algorithm [16] would incur significant cost, as multiple passes may

www.josis.org

http://www.josis.org

MULTI-SCALE WINDOW SPECIFICATION OVER STREAMING TRAJECTORIES 61

Algorithm 3 Scaling with velocity vectors
1: Function updateTrajectory (object oi) //Variant for velocity vectors
2: Update ρi according to items buffered in Qi;
3: if mod(τ, β0) = 0 then
4: for each location 〈oi, x, y, t〉 ∈ Qi do
5: traji ← traji ∪ 〈oi, x, y, t〉; //Append fresh locations into that trajectory
6: end for
7: s0 ← s0 ∪ promotePoints(0, Qi); //Lowest frame slides to accept batch of latest locations
8: end if
9: return traji;

10: End Function

11: Function promotePoints (level k, locations Pk) //Variant for velocity vectors
12: Hk ← ∅; //Heap of candidate locations sorted by γ
13: mk ← 	|Pk| · σk

ρi

; //Max number of points to be admitted into k-th frame

14: panchor ← ending point of current path sk;
15: �vk ← velocity vector for the portion of traji within range ωk;
16: partl ← Pk.pop back(); //Latest location becomes articulation point
17: for each buffered location pf = 〈oi, x, y, t〉 ∈ Pk do
18: �vf ← velocity vector from panchor to floating point pf ;
19: γ ← ‖�vf − �vk‖; //Vector difference by the law of cosines
20: Hk.insert(〈oi, x, y, t, γ〉); //Push point pf into the heap according to its γ value
21: end for
22: Pk.clear(); //Empty buffer for the next cycle
23: Lk ← pop (mk-1) items fromHk; //Locations to be promoted into k-th level
24: return Lk ∪ partl; //Emit samples in timestamp order
25: End Function

26: Function adjustFrames (object oi, timestamp τ) //Variant for velocity vectors
27: for each frame Wk, k ∈ {0 .. n-1} do
28: Pk ← ∅; //Buffer for locations of oi that expire from k-th level
29: if mod(τ, βk) = 0 then
30: trear ← τ − ωk; //Rear bound of k-th frame
31: if k = n-1 then
32: Expunge locations with timestamps < trear from traji and sn−1;
33: else
34: for each stored location 〈oi, x, y, t〉 ∈ sk do
35: if t < trear then
36: Pk.push(〈oi, x, y, t〉); //Collect expired points from k-th level sorted by timestamp
37: Remove 〈oi, x, y, t〉 from sk; //Expunge expired point from scaled trajectory path
38: end if
39: end for
40: sk+1 ← sk+1∪ promotePoints(k+1, Pk); //Expand with locations expired from k-th frame
41: end if
42: Replace sk in Si; //New trajectory path for oi at k-th frame
43: end if
44: end for
45: return Si; //Report current trajectory-filtered state for object oi
46: End Function

JOSIS, Number 7 (2013), pp. 45–75

62 PATROUMPAS

(a) (b)

Figure 7: Scaling using synchronous Euclidean distance: (a) Keeping samples that denote
locally significant changes in movement. (b) For each batch of points buffered in a frame
transition, at most mk of those with maximal SED values are retained.

be needed per trajectory. Tracking protocols examined in [15] require that the approximate
trace deviates no more than a certain accuracy bound ε from the actual path. To check
this, positional batches are collected and filtered at the moving sources before relaying any
updates to the server, in order to save communication cost. But such protocols cannot be
used with windows, as these latter constructs are inherently liaised to continuous queries
registered at the server.

Our third scaling strategy works by minimizing synchronized Euclidean distances (SED)
over triples of successive locations [24], while preserving up to �|pathk(oi)| · σk

ρi
� points,

which is the memory space reserved for k-th window frame. More specifically, at level k,
each candidate position pf (buffered in queue Pk) is probed together with its predecessor
pprev and its successor point pnext in the subsequence for oi. In order to assess whether
floating point pf should be kept, the algorithm calculates the distance from its synchronized
trace point p′f along line segment pprevpnext. Assuming constant speed, the coordinates of
point p′f can be found by linear interpolation :

x′
f = xprev +

τf−τprev
τnext−τprev

· (xnext − xprev) and y′f = yprev +
τf−τprev

τnext−τprev
· (ynext − yprev),

which clearly depend on velocity between pprev and pnext, as well as on timestamp τf of the
candidate for exclusion. Euclidean distance SED = L2(pf , p

′
f) between original point pf

and its synchronized trace p′f serves as an indicator of the local importance of pf relatively
to its neighbors in the trajectory sequence. Points with minimal SED values could be dis-
carded without much error, as their eviction can hardly distort trajectory shape. In contrast,
locations with maximal SED values may represent turning points, speed changes, etc. and
ought to be preserved in the approximation.

Example 5. Figure 7 depicts a compressed trace after scaling by SED values against the
trajectory of Figure 4. Compared to previous examples, it clearly provides the most reliable
approximation, as it captures most significant motion changes, while retaining an equiva-
lent number of samples. For the frame transition indicated by the shaded box (magnified
in Figure 7b), after taking synchronized traces B′, C′, and D′ for points B, C, and D, it is
evident that ‖BB′‖ > ‖CC′‖ > ‖DD′‖. Given that mk = 2 locations per slide must be
retained, point B is chosen along with articulation E.

www.josis.org

http://www.josis.org

MULTI-SCALE WINDOW SPECIFICATION OVER STREAMING TRAJECTORIES 63

The main difference of this policy from velocity vectors (Section 4.4), is the criterion
for promoting points across window levels. Algorithm 4 lists the adapted function pro-
motePoints(). Its only divergence from Algorithm 3 is that candidates are inserted into the
max-heap according to their SED values (lines 5–10). In all other aspects, both strategies
work similarly, so their computational complexity is the same.

Nonetheless, approximation quality is substantially improved, as empirical results con-
firm. Indeed, each object position is not probed independently, but along with adjacent
points in its local context. True, such locality is restricted to immediate neighbors in the se-
quence, like a “sliding window” of three successive locations due to online demands. Even
though, this heuristic may avoid accidental elimination of critical points with presumably
more weight (i.e., larger SED) along an object’s course.

Algorithm 4 Scaling with synchronous Euclidean distance
1: Function promotePoints (level k, locations Pk) //Variant for SED
2: Hk ← ∅; //Heap of pending locations sorted by SED
3: mk ← 	|Pk| · σk

ρi

; //Max number of points to be admitted into k-th frame

4: partl ← Pk.pop back(); //Latest location becomes articulation point
5: for each buffered location pf = 〈oi, x, y, t〉 ∈ Pk do
6: pprev ← the location that chronologically precedes floating point pf in Pk;
7: pnext ← the location that chronologically succeeds floating point pf in Pk;
8: SED← distance of pf from its synchronized trace along segment pprevpnext;
9: Hk.insert(〈oi, x, y, t, SED〉); //Push point into the heap according to its SED

10: end for
11: Pk.clear(); //Empty buffer for the next cycle
12: Lk ← pop (mk-1) items fromHk; //Locations to be promoted into k-th level
13: return Lk ∪ partl; //Emit samples in timestamp order
14: End Function

5 Towards multi-scale windowed queries over trajectories

In this section, we discuss the potential impact of multi-scale window constructs into spec-
ifying spatiotemporal continuous queries against trajectory streams.

5.1 Enhancing expressiveness in trajectory representation

Every window instantiation provides an updated set of recent paths per monitored object.
Although such traces span increasingly wider intervals in the past and may be compressed
at diverse degrees per level, the window state always offers contiguous, yet lightweight
paths. This is a major benefit for unobstructed evaluation of topological and spatiotemporal
predicates, as those established in [8, 12] for moving objects.

We can further define auxiliary functions and predicates against such sequences so as
to abstract particular aspects from the streaming spatiotemporal features. We particularly
advocate for two utilities intended to repetitively return a compact series of point locations
per moving object. At each iteration, taking the trajectory-filtered states as input (i.e., sub-
sequences of object positions within the various ranges of a multi-scale window), they offer
updated polyline representations, as follows:

JOSIS, Number 7 (2013), pp. 45–75

64 PATROUMPAS

• Function trace() may reconstruct distinct paths against each subwindow. As il-
lustrated in Figure 3b for locations relayed by a single object, a separate polyline of
timestamped points is returned per specified window frame. Note that such par-
tial representations of an object’s course may have common vertices; but in general,
they are not expected to completely coincide, not even along overlapping time ranges
among nested frames. Besides, each particular polyline gets updated at diverse fre-
quency; the larger the scope, the longer the obtained trace, but with more sparse and
less frequently refreshed vertices.

• Function synopsis() yields a “merged” path composed from successive multi-scale
segments. As shown in Figure 3c, a single such polyline is derived per object. Essen-
tially, it combines disjoint, yet consecutive parts from all its traces, but each at the
best available resolution. Articulation points are most valuable, acting as connectors
between segments from diverse scales. For any such synopsis, its most recent vertices
are obtained from the finest window frame, hence frequently updated and providing
a finer approximation. In contrast, its older segments come from wider frames with
more aggressive reduction, so the synopsis gets progressively coarser towards the
past.

Against such evolving timestamped polylines per object, it is possible to apply
typical spatiotemporal functions (e.g., speed, duration) or predicates (like WITHIN,
INTERSECTS, CROSSES, etc.). But now these operations concern reduced paths at mul-
tiple resolutions and not original trajectories, so their results may generally be meaning-
ful, albeit approximate at varying degrees. Depending on the operation, false negatives
or false positives may arise as well, usually in topological checks. For instance, a query
asking for trajectories in a rectangular region may receive certain inaccurate answers, as
some qualified trajectories could have been overly smoothed due to smaller scaling. If an
original trajectory intersects that rectangle but all related positions are dropped, then its
approximation leads to a false negative answer. Similarly, a highly smoothed path could
erroneously qualify, although the original route bypasses the region. However, this is a
typical side-effect of lossy approximations that cannot be entirely avoided, no matter which
data reduction method is actually applied. Query evaluation methods against windowed
trajectories are left for future work.

5.2 Multi-scale window declaration in spatiotemporal queries

SQL extensions for stream processing typically include some functionality for specifying
several types of windows, not only in early academic prototypes like Aurora [1], STREAM
[2] or TelegraphCQ [7], but also in commercial platforms [18, 28, 29]. Time-based sliding
windows [22] are usually specified against a streaming source with a clause [RANGE ω
SLIDE β] in continuous query language (CQL) [2]. When it comes to multi-level sliding
windows [21], specification should better not be done using an independent clause per
level. Since each frame Wk is concurrently applied over the same stream, yet covering
different portions of the received items (range ωk) and moving forward at its own pace
(slide βk), a more compact form is preferable. And as we intend to perform approximation
on each trajectory, such a clause must prescribe scale factors σk per level, along with a
discriminator attribute for object identifiers. Hence, the general form of declaring a n-level
window should be equivalent to:

www.josis.org

http://www.josis.org

MULTI-SCALE WINDOW SPECIFICATION OVER STREAMING TRAJECTORIES 65

[RANGES ω0, ω1, . . . , ωn−1 SLIDES β0, β1, . . . , βn−1 SCALES σ0, σ1, . . . , σn−1 BY < object id >]

Typically for time-based windows, values for ωk and βk are in time units (seconds,
minutes, hours, etc.), whereas scales are real numbers σk ∈ (0..1). As in cartography, a
larger σk close to 1 signifies that more features should be preserved in trajectory paths,
whereas smaller σk values approaching 0 incur more lossy compressions. But here the
concept of scale goes beyond its cartographic analogue; it stands for the precision of a
trajectory approximation across time. So scale essentially becomes a spatiotemporal notion,
as it takes into account speed and heading, but it is also dependent on inherently streaming
characteristics such as frequency of updates and window sizes.

The syntax of this clause is hybrid, borrowing terms from sliding and partitioned win-
dows over streams [2, 22]. It is specifically tailored to streaming sequences (like trajecto-
ries), where some degree of approximation is also required. Listing of window parameters
starts from the lowest level and ends up to the widest frame at level n − 1. In a potential
implementation, the query parser should check correspondence of the specified parame-
ters per frame and validate that the entire construct abides by the constraints of Section
3. Compared to multiple local views (one per frame) eventually combined into a SELECT
statement for a given continuous query, the aforementioned SQL-like rendition is far more
concise and excels in expressiveness.

Such sliding windows enhanced with the utilities proposed in Section 5.1 may prove
valuable for expressing several types of continuous spatiotemporal queries. An important
distinction is that SELECT statements may return a multiset of answers, each referring
to a different frame. For instance, a user could ask for the average speed over a multi-
scale window specifying various periods of interest (e.g., past 15 minutes, one hour, etc.).
To properly annotate results, we suggest a function WSCOPE(*) that can be used as an
additional expression in SELECT. Calling this function would issue a window identifier
per answer and thus indicate the respective scope (i.e., interval in timestamp values) over
which results were actually computed.

To offer more insight, we examine two characteristic continuous queries (CQ) for a fleet
management scenario. Let a stream S of tuples <id, pos, ts> that denote positional
updates from vehicles as relayed into a traffic control center. For simplicity, we consider
windows of n = 3 frames, yet each one specifies its own values for 〈ωk, βk, σk〉. We stress
that the proposed SQL-like syntax is only indicative, as no actual implementation currently
supports declarative submission of such composite queries.

Example 6. CQ #1: “Indicate vehicles that have been recently on the move in the city
center.”

SELECT S.id
FROM S [RANGES 1 MINUTE, 5 MINUTES, 20 MINUTES

SLIDES 15 SECONDS, 1 MINUTE, 10 MINUTES
SCALES 0.4, 0.2, 0.1 BY S.id],

(SELECT region FROM Districts WHERE name = ’Athens center’) D
WHERE duration(Intersection(synopsis(S.pos), D.region))>= ’10 MINUTES’ ;

This statement joins the spatiotemporal stream of positions S and a spatial relational
table Districts, which contains the geometries of certain areas in the city. Nested sub-
query with alias D simply provides a polygon for the area of interest. In order to get the
portion of each trajectory inside that region, an Intersection operation is employed. Its
result is also a spatiotemporal trajectory and not a spatial polyline, exactly as prescribed

JOSIS, Number 7 (2013), pp. 45–75

66 PATROUMPAS

in [12]. Then, function duration can be applied over the cropped path to return the re-
spective time interval of movement within that region. If such duration spans more than,
say, 10 minutes for a given vehicle, then it qualifies for the answer at that time. Note that
results get updated at the pace of the smaller frame, i.e., every 15 seconds. For a timely
response, evaluation may only involve synopses and not distinctive traces per frame, in
order to examine a single approximate path per object. But false or missing answers cannot
be excluded, as the topological check may not be always correct for the coarser trajectory
segments due to scaling.
Example 7. CQ #2: “For each major junction in the network, continuously inspect traffic
variations according to vehicle counts.”

SELECT T.junction_id, T.win_ref, COUNT(T.vehicle_id)
FROM (SELECT J.id AS junction_id, S.id AS vehicle_id, WSCOPE(*) AS win_ref

FROM S [RANGES 10 MINUTES, 30 MINUTES, 1 HOUR
SLIDES 1 MINUTE, 5 MINUTES, 15 MINUTES
SCALES 0.5, 0.3, 0.1 BY S.id],

Junctions J
WHERE CROSSES(trace(S.pos), J.region)) T

GROUP BY T.junction_id, T.win_ref ;

This query intends to offer some sort of traffic analytics. Spatial table Junctions
is supposed to list important crossroads of the network as polygonal areas (attribute
region). Nested subquery with alias T identifies trajectory traces that topologically CROSS
any of such regions. Note that such probing of traces refers to each of the three frames; if
a path qualifies, then the nested subquery provides this vehicle’s id and the junction it has
actually traversed, as well as a window annotation win_ref with a call to WSCOPE(*). It
is important to mark results with the respective time period win_ref, as a distinct vehicle
may have passed through a junction 15 minutes ago, so just two of its traces qualify (i.e.,
paths spanning 30 and 60 minutes). Finally, the outer query simply counts vehicles by
junction and time period in order to emit aggregates every minute, as stipulated by the
sliding pace of the bottommost frame. Up to three counts should be expected per junction
(i.e., as many as the window levels) offering the potential of identifying traffic fluctuations
for any junction across the network.

6 Experimental evaluation

In this section, we empirically validate the alternative strategies for multi-scale sliding win-
dow maintenance against streaming trajectories of moving objects.

6.1 Experimental setup

Due to lack of massive, streaming real motion data, we generated a synthetic dataset sim-
ulating N = 100 000 vehicles moving at diverse speeds in the road network of Athens. By
calculating shortest paths between nodes chosen randomly across the network, positional
samples at 200 timestamps were taken from each route. This point set is ordered by time,
effectively representing concurrently evolving trajectories.

All algorithms were implemented in C++ and executed on an Intel Core 2 Duo 2.40GHz
CPU running GNU/Linux with 3GB of main memory. In accordance with the data stream

www.josis.org

http://www.josis.org

MULTI-SCALE WINDOW SPECIFICATION OVER STREAMING TRAJECTORIES 67

processing paradigm, this implementation adheres to online computation in main memory,
excluding any disk-bound techniques (e.g., spatial indexing).

Table 1: Experimentation parameters.
Parameter Values

Object count N 100 000
Window levels n 3, 4, 5, 10
Window ranges ω 4,8,10,12,16,20,24,28,30,32,

(timestamps) 36,40,50,64,80,90,100,160
Window slides β 2,4,5,6,8,10

(timestamps) 18,20,25,32,50
Scale factor σ 0.1, 0.2, 0.25, 0.3,

0.4, 0.5, 0.6, 0.8, 1

Table 2: Custom 3-level window settings.
Parameter Sets of values

Ranges ω1 = {5, 10, 20}, ω2 = {10, 20, 40},
(timestamps) ω3 = {20, 40, 80}, ω4 = {10, 50, 100}

Slides β1 = {2, 5, 10}, β2 = {5, 10, 20},
(timestamps) β3 = {10, 10, 20} β4 = {5, 25, 50}

Scales σ1 = {0.5, 0.3, 0.2}, σ2 = {0.6, 0.3, 0.2},
σ3 = {0.8, 0.4, 0.2}, σ4 = {1, 0.5, 0.25}

We ran simulations using diverse parameter settings for each experiment. Table 1 sum-
marizes experimentation parameters and their respective values. Note that each window
specification is comprised of several triplets 〈ωk, βk, σk〉, one per level k. Many such com-
binations have been tested, always conforming to the window constraints as defined in
Section 3. Values recurring in several experiments are shown in bold. Table 2 shows some
particular sets of frame specifications especially for 3-level windows; for each set, values
are listed from bottommost to topmost frame. For instance, set ω1 = {5, 10, 20} specifies
ω0 = 5 for the lower frame, ω1 = 10 for the middle one, and ω2 = 20 for the topmost
frame. As detailed in the results, we used these sets to perform tests with one window
parameter varying, but having fixed values on the other two (e.g., varying ωk, and fixed βk

and σk). To verify robustness of the proposed techniques, all experiments were conducted
with ρ = 100 000 tuples/timestamp, so all objects concurrently report a new location at
every timestamp.

Apart from performance, we also assessed approximation quality of each scaling strat-
egy. For each window frame, we estimated deviation between an original trajectory and its
derived trace (i.e., after scaling). Deviation between two polylines can be computed from
the pairwise distance of their corresponding points, i.e., between each pair of synchronized
locations. Suppose that an original point pi has been evicted due to scaling. To estimate
the resulting deviation, we interpolated between the pair of samples retained immediately
before and after pi in order to obtain its synchronized point trace p′i along the approximate
route. Obviously, only such cases contribute to error; otherwise, it holds pi ≡ p′i because
original locations are strictly used in the approximate trace and no strategy introduces any
points not already in the input. Assuming that M original points per object were within
scope of the examined window frame, we estimated the root mean square error (RMSE)
between original and approximate sequences of locations using this formula:

RMSE =

√√√√ 1

M
·

M∑
i=1

(L2(pi, p
′
i))

2

where L2 denotes Euclidean distance between point coordinates on 2-d plane. Since co-
ordinates in the dataset were expressed in meters, so are distances and RMSE values.
This estimation took place upon sliding of a given window frame, i.e., when paths got
refreshed. Typically, the measure reported in the graphs is the average of RMSE values
against transient trajectory synopses per timestamp, one per monitored object. We com-
plement this evaluation study with diagrams for the maximum RMSE observed among all

JOSIS, Number 7 (2013), pp. 45–75

68 PATROUMPAS

object sequences (indicating worst-case errors), as well as the reduction ratio of trajectory
representations achieved by the proposed scaling.

6.2 Experimental results

Next, we show diagrams from most representative simulations for windowed operations
with diverse parameter settings. With the exception of graphs for maximum RMSE on
approximate traces, all other evaluation results are averages of actual measurements per
timestamp over complete (i.e., not “half-filled”) windows.

Frame maintenance mode The first set of experiments confirm that our nested frame-
work (NEST) is advantageous over a baseline approach (ISOL) involving separately up-
dated windows, each at a single resolution. As plotted in Figure 8a, only random sam-
pling runs faster in isolated mode, simply because no bitmaps need be maintained or up-
dated. But calculating velocity or SED values separately against longer sequences of points
buffered over wider β intervals is absolutely wasteful, as the same vectors or distance val-
ues get computed multiple times over points that fall in several, overlapping frames. If
windows slide less often (larger β), savings from nested evaluation are considerable espe-
cially for SED; results for velocity vectors are similar and not reported for brevity. Figures
8b and 8c show that accuracy of scaled trajectories benefits considerably by deriving them
gradually from paths available at better resolutions. Regardless of scale settings, nested
processing incurs consistently smaller deviations. Indeed, it is less likely to drop a critical
point within a finer frame spanning a brief interval; when promoted upwards to coarser
frames, such positions are more fit to epitomize motion than batches of undistinguished
raw points utilized in isolated maintenance.

1 2 3 4
0

5

10

β sets

E
xe

cu
tio

n
tim

e
(s

ec
)

NEST

ISOL

n=3σ={0.5,0.2,0.1}
ω={10,50,100}

Random
SED
Random
SED

}
}

β β β β

(a)

1 2 3 4
0

10

20

30

σ sets

av
g

R
M

S
E

 (
m

)

NEST ISOL
Random

SED

n=3

β={2,4,8}ω={10,20,40}

Random
SED

σ σ σ σ

(b)

Random Velocity SED
0

50

100

150

200

m
ax

 R
M

S
E

 (
m

)

<ω4,β2,σ1>NEST
ISOL

(c)

Figure 8: Nested vs. isolated maintenance of multi-level window frames.

Reduction ratio One of the primary objectives of multi-scale windows over trajectories
is to offer reduced, yet reliable approximations. In order to measure the accomplished re-
duction ratio, we compared the amount of discarded points against the originally relayed
locations per trajectory. Figure 9 depicts measurements of this ratio with varying window
settings from Table 2, both for isolated computation per frame (ISOL) and nested window
maintenance (NEST). Clearly, reduction depends chiefly on scaling, as smaller factors dic-
tate a frame to drop more point locations (Figures 9a and 9b). For the moderate scale set-
tings in Table 2, about half of the total locations in each sequence are dropped with nested

www.josis.org

http://www.josis.org

MULTI-SCALE WINDOW SPECIFICATION OVER STREAMING TRAJECTORIES 69

1 2 3 4
0

0.5

1

ω sets

R
ed

uc
tio

n
ra

tio
n=3

σ={0.5,0.2,0.1}
β={5,10,20} NEST

ISOL

ω ω ω ω

(a)

1 2 3 4
0

0.5

1

β sets

R
ed

uc
tio

n
ra

tio

n=3

σ={0.5,0.2,0.1}
ω={10,50,100} NEST

ISOL

β βββ

(b)

1 2 3 4
0

0.5

1

σ sets

R
ed

uc
tio

n
ra

tio

n=3

β={2,4,8}
ω={10,20,40}

NEST
ISOL

σ σσσ

(c)

Figure 9: Reduction ratio under nested and isolated window maintenance.

maintenance (Figure 9c). In all tests, the isolated scheme consumes more space (i.e., less
reduction effect), as it keeps separate lists of locations per path; so, duplicates are possible
when a location contributes to multiple paths across levels (e.g., articulation points). In
contrast, with a nested evaluation of trajectory-filtered states, a chosen point is retained
once not already picked up at a subordinate level. Thus, reduction is more pronounced for
upper levels in the nested hierarchy. With respect to memory consumption, consider the
extreme case of fixed σ = 1, i.e., no compression at all. Thanks to inherent nesting of its
substates in a strairwise scheme, a n-level window W has to retain as many tuples as an
autonomous sliding window equivalent to its widest frame Wn−1. This constitutes a clear
advantage over isolated maintenance of separate windows per level, and such a gain gets
definitively improved when scaling comes into play.

1 2 3 4
0

1

2

3

ω sets

E
va

lu
ta

tio
n

tim
e

(s
ec

)

n= 3

σ={0.5, 0.2, 0.1}
β={5, 10, 20}

Random
Velocity
SED

ωω ω ω

(a)

1 2 3 4
0

1

2

3

4

β sets

E
va

lu
at

io
n

tim
e

(s
ec

) n= 3

σ= {0.5, 0.2, 0.1}
ω= {10, 50, 100}

Random
Velocity
SED

ββ β β

(b)

1 2 3 4
0

1

2

σ sets

E
va

lu
at

io
n

tim
e

(s
ec

) n= 3

β= {2, 4, 8}
ω= {10, 20, 40}

Random
Velocity
SED

σσ σ σ

(c)

Figure 10: Nested window maintenance cost under diverse parameterizations.

Window parameterization For the nested processing scheme, we now examine perfor-
mance of each strategy against window instantiations with n = 3 levels. Figure 10 depicts
window maintenance cost, i.e., the time required to refresh nested substates and update
multi-scaled paths for all objects. We tested diverse sets of each window property as de-
fined in Table 2, using fixed values per level for the other two properties. As illustrated in
Figure 10a for several combinations of range values, determining each window state per
timestamp remains stable for strategies based on motion features (i.e., SED and velocity
vectors). This is plausible, since picking new points occurs upon each slide only, and β
values are fixed. As for random sampling, its cost increases with wider temporal ranges, as

JOSIS, Number 7 (2013), pp. 45–75

70 PATROUMPAS

this incurs additional overhead due to longer sequences and more bitmap updates. With
respect to varying slides β, strategies based on SED and velocity vectors also prove supe-
rior to random sampling (Figure 10b). Naturally, these policies require more time to update
trajectory paths for increasing slide steps, since they have to deal with more candidate po-
sitions at each iteration. With respect to different scale factors, but fixed ranges and slides
as shown in Figure 10c, it appears that all three strategies are comparable with little fluc-
tuations. In all experiments, the nested maintenance per timestamp for all window frames
and all trajectories regularly took less than 2 seconds and never exceeded 5 seconds. Given
the high rate of ρ = 100 000 positions/timestamp of incoming updates, such performance
certainly meets real-time expectations of the proposed scheme.

1 2 3 4
0

10

20

30

40

ω sets

av
g

R
M

S
E

 (
m

) n= 3

σ={0.5, 0.2, 0.1}
β={5, 10, 20}

Random
Velocity
SED

ω ω ωω ω

(a)

1 2 3 4
0

10

20

30

40

50

β sets

av
g

R
M

S
E

 (
m

) n= 3

σ={0.5, 0.2, 0.1}ω={10, 50, 100}

Random
Velocity
SED

ββ ββ

(b)

1 2 3 4
0

5

10

15

σ sets

av
g

R
M

S
E

 (
m

) n= 3

β= {2, 4, 8}
ω= {10, 20, 40}

Random
Velocity
SED

σσ σ σ

(c)

Figure 11: Average RMSE for nested evaluation of multi-scale windows.

Figure 11 plots average RMSE for the same window settings. One can easily verify that
strategy SED offers better trajectory approximations in almost all cases. Note that error
increases with the window ranges (Figure 11a), since longer paths are maintained, so more
points get inevitably discarded to meet scale restrictions. Surprisingly, random sampling
incurs less error than velocity vectors over larger ranges (>80 timestamps). As stated in
Section 4.4, using velocity vectors from the same anchor point may lead to choosing sev-
eral adjacent locations with high γ values, even if just one of them could suffice. If allocated
memory is wasted to accommodate such redundant positions among a total of mk points
reserved per level k, then little space is left for other points of less γ, but perhaps more
critical along the sequence. In situations like these, even choosing samples randomly may
be more appropriate, as this test indicates. With respect to varying window slides, Figure
11b reveals that SED may achieve better approximation quality with more abrupt window
slides (i.e., larger β per level). By looking at an increasing number of candidate points,
this strategy succeeds to identify more representative positions according to their local im-
pact on trajectory shape. Quite the reverse occurs with velocity vectors; wrongly picking
consecutive samples with similar γ values gets all the more accentuated with larger slides.
For varying sets of scale values (Figure 11c), velocity vectors incur again serious deviations
from original trajectories. Naturally, error drops with greater σ values (i.e., less reduction
per level), as scale factors are meant to dominate the degree of approximation and accuracy
of compressed trajectory paths is sensitive to scaling. Overall, strategy SED seems quite
suitable for most window settings, both in terms of performance and quality of derived
approximations. Its average RMSE is below 10 meters in most cases, which is practically
more than tolerable in such a streaming context.

www.josis.org

http://www.josis.org

MULTI-SCALE WINDOW SPECIFICATION OVER STREAMING TRAJECTORIES 71

3 4 5 10
0

1

2

3

Window levels (n)

E
va

lu
at

io
n

tim
e

(s
ec

)

σ= 0.5

Random
Velocity
SED

(a)

3 4 5 10
0

1

2

3

Window levels (n)
E

va
lu

at
io

n
tim

e
(s

ec
)

σ= {0.2, 0.3, 0.5}

Random
Velocity
SED

(b)

3 4 5 10
0

1

2

3

Window levels (n)

E
va

lu
at

io
n

tim
e

(s
ec

)

σ= {0.2, 0.4, 0.8}

Random
Velocity
SED

(c)

Figure 12: Nested maintenance cost for varying numbers of window levels.

Varying window levels Smooth maintenance of multiple substates is an important ben-
efit from the proposed paradigm. This is reflected in Figure 12, indicating that it takes little
time to update trajectory paths. In these tests, we examine multi-level windows with a
varying number n of frames, yet setting ωn−1 = 40 timestamps for the widest range. We
also consider varying scales for each level: either the same factor per level (Figure 12a) or
diverse values chosen from the indicated sets (Figures 12b and 12c), always obeying the
rule that a subordinate frame deserves better resolution. But, even for up to 10 levels, each
additional level incurs little overhead for all strategies, while focusing farther in the past.
This happens mainly because we can exploit already computed sequences from subordi-
nate levels.

3 4 5 10
0

5

10

Window levels (n)

av
g

R
M

S
E

σ= 0.5 Random
Velocity
SED

(a)

3 4 5 10
0

5

10

15

20

Window levels (n)

av
g

R
M

S
E

σ= {0.2,0.3,0.5}

Random
Velocity
SED

(b)

3 4 5 10
0

5

10

Window levels (n)

av
g

R
M

S
E

σ= {0.2,0.4,0.8}

Random
Velocity
SED

(c)

Figure 13: Average RMSE for varying numbers of window levels in nested evaluation.

Regarding approximation error, it generally drops when more periods of interest sub-
divide a given time horizon. Meanwhile, the derived trajectory shape is highly sensitive to
scaling. All this is verified in Figure 13 for a maximal range of ωn−1 = 40 timestamps and
diverse scale factors. In essence, each additional level attempts to retain a longer path as
much closer to the original trajectory. Then, the overall trajectory synopsis glues together
consecutive parts of these n subsequences, each offered at the best available resolution ac-

JOSIS, Number 7 (2013), pp. 45–75

72 PATROUMPAS

cording to scale factors (as the example in Figure 3c). Quality is moderate when velocity
vectors are employed, but quite acceptable (always less than 10 meters) for strategies based
on SED and random sampling.

7 Conclusions and future work

In this paper, we set out the foundation for a windowing construct at multiple levels of
detail against trajectory data rapidly streaming from numerous moving objects. This novel
operator has an inherent spatiotemporal flavor, as it not only returns positional items from
the recent past, but it may also offer reliable approximations at varying resolutions. To
comply with memory restrictions, it implicitly works in an amnesic fashion, by retaining
finer traces for the recent movement at the expense of gradually coarser segments towards
the past. Thus, it provides several compressed representations of a given trajectory, each at
a “scale” prescribed by user requests.

We explained the semantics of such multi-scale sliding windows and presented certain
interesting properties, which enable their efficient, cross-level evaluation. Towards online
processing of positional streams, we developed concrete algorithms for nested, incremen-
tal maintenance of window states. We also introduced language constructs for windowed
trajectories and exemplified their expressiveness in spatiotemporal continuous queries. We
conducted a comprehensive empirical study on synthetic datasets, attesting that the pro-
posed framework can boost performance and approximation quality under a variety of
window specifications. These experiments indicate that multi-scale window semantics can
support reliable trajectory approximations of varying resolutions in near real-time and at
reduced space overhead.

This scheme opens up perspectives for improvement and further extensions. First, we
plan to investigate other trajectory compression methods that work in online fashion and
could offer even better quality. In terms of query evaluation, identifying window specifica-
tions shared by multiple user queries and handling them in common, is a challenging topic.
In a real monitoring platform, where thousands of requests require immediate response,
such policies can provide huge optimization gains [3, 23]. Another research direction con-
cerns quality guarantees for approximate trajectories. In order not to exceed such prespec-
ified error margins, we may opt for policies that gracefully adjust compression degrees per
frame at runtime, always conforming to memory limitations. Finally, except for trajectories,
this multi-resolution framework might also be attractive for handling other types of online
sequential data, e.g., meteorological readings, hydrological timeseries, financial tickers, etc.

References

[1] ABADI, D. J., CARNEY, D., ÇETINTEMEL, U., CHERNIACK, M., CONVEY, C., LEE,
S., STONEBRAKER, M., TATBUL, N., AND ZDONIK, S. Aurora: a new model and
architecture for data stream management. The VLDB Journal 12, 2 (2003), 120–139.
doi:10.1007/s00778-003-0095-z.

[2] ARASU, A., BABU, S., AND WIDOM, J. The CQL continuous query language: se-
mantic foundations and query execution. The VLDB Journal 15, 2 (2006), 121–142.
doi:10.1007/s00778-004-0147-z.

www.josis.org

http://dx.doi.org/10.1007/s00778-003-0095-z
http://dx.doi.org/10.1007/s00778-004-0147-z
http://www.josis.org

MULTI-SCALE WINDOW SPECIFICATION OVER STREAMING TRAJECTORIES 73

[3] ARASU, A., AND WIDOM, J. Resource sharing in continuous sliding-window aggre-
gates. In Proc. 30th International Conference on Very Large Data Bases (VLDB) (2004),
VLDB Endowment, pp. 336–347. doi:10.1016/B978-012088469-8.50032-2.

[4] BERTINO, E., CAMOSSI, E., AND BERTOLOTTO, M. Multi-granular spatio-temporal
object models: concepts and research directions. In Object Databases, M. C. Norrie and
M. Grossniklaus, Eds., vol. 5936 of Lecture Notes in Computer Science. Springer, 2010,
pp. 132–148. doi:10.1007/978-3-642-14681-7 8.

[5] BETTINI, C., DYRESON, C. E., EVANS, W. S., SNODGRASS, R. T., AND WANG, X. S.
A glossary of time granularity concepts. In Temporal databases: Research and practice,
O. Etzion, S. Jajodia, and S. Sripada, Eds., vol. 1399 of Lecture Notes in Computer Science.
Springer, 1998, pp. 406–413. doi:10.1007/BFb0053711.

[6] CAO, H., WOLFSON, O., AND TRAJCEVSKI, G. Spatio-temporal data reduc-
tion with deterministic error bounds. The VLDB Journal 15, 3 (2006), 211–228.
doi:10.1007/s00778-005-0163-7.

[7] CHANDRASEKARAN, S., COOPER, O., DESHPANDE, A., FRANKLIN, M., HELLER-
STEIN, J., HONG, W., KRISHNAMURTHY, S., MADDEN, S., RAMAN, V., REISS, F., AND
SHAH, M. TelegraphCQ: Continuous dataflow processing for an uncertain world. In
Proc. 1st Biennial Conference on Innovative Data Systems Research (CIDR) (2003), CIDR.

[8] EGENHOFER, M. J., AND FRANZOSA, R. D. Point-set topological spatial rela-
tions. International Journal of Geographical Information Systems 5, 2 (1991), 161–174.
doi:10.1080/02693799108927841.

[9] FORLIZZI, L., GÜTING, R. H., NARDELLI, E., AND SCHNEIDER, M. A data
model and data structures for moving objects databases. In Proc. ACM Interna-
tional Conference on Management of Data (SIGMOD) (2000), ACM Press, pp. 319–330.
doi:10.1145/342009.335426.

[10] GEDIK, B., LIU, L., WU, K.-L., AND YU, P. S. Lira: Lightweight, region-aware load
shedding in mobile CQ systems. In Proc. IEEE 23rd International Conference on Data
Engineering (ICDE) (2007), IEEE, pp. 286–295. doi:10.1109/ICDE.2007.367874.

[11] GÜTING, R. H., BEHR, T., AND DÜNTGEN, C. SECONDO: A platform for moving ob-
jects database research and for publishing and integrating research implementations.
IEEE Data Engineering Bulletin 33, 2 (2010), 56–63.

[12] GÜTING, R. H., BÖHLEN, M. H., ERWIG, M., JENSEN, C. S., LORENTZOS, N. A.,
SCHNEIDER, M., AND VAZIRGIANNIS, M. A foundation for representing and
querying moving objects. ACM Transactions on Database Systems 25, 1 (2000), 1–42.
doi:10.1145/352958.352963.

[13] HU, H., XU, J., AND LEE, D. L. A generic framework for monitoring continuous spa-
tial queries over moving objects. In Proc. 24th ACM International Conference on Manage-
ment of Data (SIGMOD) (2005), ACM Press, pp. 479–490. doi:10.1145/1066157.1066212.

[14] JAIN, N., MISHRA, S., SRINIVASAN, A., GEHRKE, J., WIDOM, J., BALAKRISHNAN,
H., ÇETINTEMEL, U., CHERNIACK, M., TIBBETTS, R., AND ZDONIK, S. Towards a
streaming SQL standard. Proceedings of the VLDB Endowment 1, 2 (2008), 1379–1390.

JOSIS, Number 7 (2013), pp. 45–75

http://dx.doi.org/10.1016/B978-012088469-8.50032-2
http://dx.doi.org/10.1007/978-3-642-14681-7_8
http://dx.doi.org/10.1007/BFb0053711
http://dx.doi.org/10.1007/s00778-005-0163-7
http://dx.doi.org/10.1080/02693799108927841
http://dx.doi.org/10.1145/342009.335426
http://dx.doi.org/10.1109/ICDE.2007.367874
http://dx.doi.org/10.1145/352958.352963
http://dx.doi.org/10.1145/1066157.1066212

74 PATROUMPAS

[15] LANGE, R., DÜRR, F., AND ROTHERMEL, K. Efficient real-time trajectory tracking.
The VLDB Journal 20, 5 (2011), 671–694. doi:10.1007/s00778-011-0237-7.

[16] MERATNIA, N., AND DE BY, R. A. Spatiotemporal compression techniques for
moving point objects. In Advances in Database Technology (EDBT 2004), E. Bertino,
S. Christodoulakis, D. Plexousakis, V. Christophides, M. Koubarakis, K. Böhm, and
E. Ferrari, Eds., vol. 2992 of Lecture Notes in Computer Science. Springer, 2004, pp. 765–
782. doi:10.1007/978-3-540-24741-8 44.

[17] MOURATIDIS, K., PAPADIAS, D., AND HADJIELEFTHERIOU, M. Conceptual partition-
ing: an efficient method for continuous nearest neighbor monitoring. In Proc. 24th
ACM International Conference on Management of Data (SIGMOD) (2005), ACM Press,
pp. 634–645. doi:10.1145/1066157.1066230.

[18] ORACLE, INC. Complex event processing CQL language reference. http:�docs.oracle.
com/cd/E16764 01/doc.1111/e12048/intro.htm, 2009. Last accessed on 15/09/2013.

[19] PARENT, C., SPACCAPIETRA, S., AND ZIMÁNYI, E. The MurMur project: Modeling
and querying multi-representation spatio-temporal databases. Information Systems 31,
8 (2006), 733–769. doi:10.1016/j.is.2005.01.004.

[20] PATROUMPAS, K. Multi-scale windowing over trajectory streams. In Advances in
Conceptual Modeling, S. Castano, P. Vassiliadis, L. V. Lakshmanan, and M. L. Lee,
Eds., vol. 7518 of Lecture Notes in Computer Science. Springer, 2012, pp. 294–303.
doi:10.1007/978-3-642-33999-8 35.

[21] PATROUMPAS, K., AND SELLIS, T. Multi-granular time-based sliding windows over
data streams. In Proc. 17th International Symposium on Temporal Representation and Rea-
soning (TIME) (2010), IEEE, pp. 146–153. doi:10.1109/TIME.2010.14.

[22] PATROUMPAS, K., AND SELLIS, T. Maintaining consistent results of continuous
queries under diverse window specifications. Information Systems 36, 1 (2011), 42–61.
doi:10.1016/j.is.2010.02.001.

[23] PATROUMPAS, K., AND SELLIS, T. Subsuming multiple sliding windows for shared
stream computation. In Advances in Databases and Information Systems, J. Eder,
M. Bielikova, and A. M. Tjoa, Eds., vol. 6909 of Lecture Notes in Computer Science.
Springer, 2011, pp. 56–69. doi:10.1007/978-3-642-23737-9 5.

[24] POTAMIAS, M., PATROUMPAS, K., AND SELLIS, T. Online amnesic summarization
of streaming locations. In Advances in Spatial and Temporal Databases, D. Papadias,
D. Zhang, and G. Kollios, Eds., vol. 4605 of Lecture Notes in Computer Science. Springer,
2007, pp. 148–166. doi:10.1007/978-3-540-73540-3 9.

[25] RICHTER, K.-F., SCHMID, F., AND LAUBE, P. Semantic trajectory compression: Rep-
resenting urban movement in a nutshell. Journal of Spatial Information Science, 4 (2013),
3–30. doi:10.5311/JOSIS.2012.4.62.

[26] RIGAUX, P., SCHOLL, M., AND VOISARD, A. Spatial databases: with application to GIS.
Morgan Kaufmann, 2001.

www.josis.org

http://dx.doi.org/10.1007/s00778-011-0237-7
http://dx.doi.org/10.1007/978-3-540-24741-8_44
http://dx.doi.org/10.1145/1066157.1066230
docs.oracle.com/cd/E16764_01/doc.1111/e12048/intro.htm
docs.oracle.com/cd/E16764_01/doc.1111/e12048/intro.htm
http://dx.doi.org/10.1016/j.is.2005.01.004
http://dx.doi.org/10.1007/978-3-642-33999-8_35
http://dx.doi.org/10.1109/TIME.2010.14
http://dx.doi.org/10.1016/j.is.2010.02.001
http://dx.doi.org/10.1007/978-3-642-23737-9_5
http://dx.doi.org/10.1007/978-3-540-73540-3_9
http://dx.doi.org/10.5311/JOSIS.2012.4.62
http://www.josis.org

MULTI-SCALE WINDOW SPECIFICATION OVER STREAMING TRAJECTORIES 75

[27] STONEBRAKER, M., ÇETINTEMEL, U., AND ZDONIK, S. The 8 requirements
of real-time stream processing. ACM SIGMOD Record 34, 4 (2005), 42–47.
doi:10.1145/1107499.1107504.

[28] STREAMBASE SYSTEMS, INC. StreamSQL guide. http:�docs.streambase.com/sb71/
index.jsp?topic=/com.streambase.sb.ide.help/data/html/streamsql/index.html,
2012. Last accessed on 15/09/2013.

[29] SYBASE, INC. Complex event processing using windows. http:�infocenter.
sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc01029.0400/doc/html/
tbi1263964912506.html, 2010. Last accessed on 15/09/2013.

[30] WOLFSON, O., SISTLA, A. P., CHAMBERLAIN, S., AND YESHA, Y. Updating and
querying databases that track mobile units. Distributed and Parallel Databases 7, 3
(1999), 257–287. doi:10.1023/A:1008782710752.

JOSIS, Number 7 (2013), pp. 45–75

http://dx.doi.org/10.1145/1107499.1107504
docs.streambase.com/sb71/index.jsp?topic=/com.streambase.sb.ide.help/data/html/streamsql/index.html
docs.streambase.com/sb71/index.jsp?topic=/com.streambase.sb.ide.help/data/html/streamsql/index.html
infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc01029.0400/doc/html/tbi1263964912506.html
infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc01029.0400/doc/html/tbi1263964912506.html
infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc01029.0400/doc/html/tbi1263964912506.html
http://dx.doi.org/10.1023/A:1008782710752

	Introduction
	Related work
	Windows over data streams
	Multi-granular semantics
	Trajectory management
	Stream processing with multi-granular windows

	Semantics of multi-scale windows over trajectories
	Time-based filtering
	Trajectory-based filtering
	Discussion

	Online maintenance of multi-resolution motion paths
	Representation issues for approximated trajectories
	Processing mechanism
	Scaling strategy using random sampling
	Scaling strategy based on velocity vectors
	Scaling strategy using synchronous Euclidean distance

	Towards multi-scale windowed queries over trajectories
	Enhancing expressiveness in trajectory representation
	Multi-scale window declaration in spatiotemporal queries

	Experimental evaluation
	Experimental setup
	Experimental results

	Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

