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Abstract: The road network is one of the key feature classes in topographic maps and
databases. In the task of deriving road networks for products at smaller scales, road net-
work selection forms a prerequisite for all other generalization operators, and is thus a fun-
damental operation in the overall process of topographic map and database production.
The objective of this work was to develop an algorithm for automated road network selec-
tion from a large-scale (1:10,000) to a small-scale database (1:200,000). The project was pur-
sued in collaboration with swisstopo, the national mapping agency of Switzerland, with
generic mapping requirements in mind. Preliminary experiments suggested that a selec-
tion algorithm based on betweenness centrality performed best for this purpose, yet also
exposed problems. The main contribution of this paper thus consists of four extensions
that address deficiencies of the basic centrality-based algorithm and lead to a significant
improvement of the results. The first two extensions improve the formation of strokes
concatenating the road segments, which is crucial since strokes provide the foundation
upon which the network centrality measure is computed. Thus, the first extension en-
sures that roundabouts are detected and collapsed, thus avoiding interruptions of strokes
by roundabouts, while the second introduces additional semantics in the process of stroke
formation, allowing longer and more plausible strokes to built. The third extension detects
areas of high road density (i.e., urban areas) using density-based clustering and then lo-
cally increases the threshold of the centrality measure used to select road segments, such
that more thinning takes place in those areas. Finally, since the basic algorithm tends to
create dead-ends—which however are not tolerated in small-scale maps—the fourth ex-
tension reconnects these dead-ends to the main network, searching for the best path in the
main heading of the dead-end.

Keywords: map generalization, road network selection, strokes, network centrality, be-
tweenness centrality
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1 Introduction

One of the ultimate goals of many national mapping agencies (NMAs) is to derive smaller-
scale data sets from a single, detailed database [1, 11]. One of the key operators of map
generalization is the selection operator, which is usually carried out as the first step of the
generalization process, in order to select an initial subset of map objects that will subse-
quently be subjected to further generalization operators, such as shape simplification and
smoothing, aggregation, exaggeration, and displacement [27]. Due to the overriding im-
portance of the road network among the feature classes of topographic maps, in particular
small scale maps, road network selection is a particularly important generalization opera-
tor, and has thus attracted considerable research interest over the past two decades. Road
network selection, however, is a non-trivial process, as it has to cope with maintaining a co-
herent network of roads, each having a particular shape, angle, orientation, and length [7].
On the global level, the road network exhibits density variation across the map, ranging
from high densities in urban areas to low densities in rural areas. This density variation
should also be maintained. Not surprisingly, different approaches to road network selec-
tion exist, but so far no single algorithm has clearly outperformed others. Moreover and
crucially, algorithms have usually only been tested on few, small datasets. To our knowl-
edge, none has been tested and optimized on large datasets with diverse characteristics,
and against real production requirements. Thus, most mapping agencies still carry out
the selection process interactively (i.e., manually), or use simple selection algorithms that
necessitate subsequent interactive cleaning.

The objective of this work was to develop an algorithm for automated road network
selection from a large-scale (e.g., 1:10,000) to a small-scale database (1:200,000 or smaller).
The project was pursued in collaboration with the Federal Office of Topography of Switzer-
land (swisstopo). This collaboration gave us access to large datasets, real-life production
requirements, and thorough cartographic expertise in the evaluation phase. However, due
to the universal role of the transportation networkconnecting places and providing accessi-
bility of places it was possible to define a set of rather generic constraints for the envisaged
algorithm that have the potential of being adaptable to the requirements of other map pro-
ducers (Section 4.1).

Swisstopo thus served as case study in this work, but the aim was to develop a more
generic solution. Like many other NMAs, swisstopo has developed a high-resolution to-
pographic database as a basis for the derivation of a complete suite of map and database
products at a series of scales. This basic database is called TLM3D. TLM3D is the large-
scale topographic landscape model of Switzerland. It includes natural and artificial topo-
graphic features and is the most extensive and accurate 3-D vector official data set of the
country, with a nominal scale between 1:5,000 and 1:25,000 (depending on the area and
feature class). From TLM3D, smaller scale data sets are derived, such as VECTOR200, a
cartographic product at a scale of 1:200,000. Owing to the vast scale difference and the
complexity of map generalization involved, the derivation process is currently still carried
out manually in an interactive system. Figure 1 gives an impression of the detail contained
in TLM3D, as opposed to VECTOR200. TLM3D basically contains every single footpath,
while VECTOR200 is restricted to the major network connections. The aim of this work was
then to develop an algorithm that would allow road network selection between products
exemplified by TLM3D and VECTOR200, respectively.
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Figure 1: Test area of 26 km × 23 km around Langenthal, Switzerland. Source dataset
(TLM3D) and the manually produced target dataset (VECTOR200). (Data c© swisstopo)

Experiments with several candidate algorithms showed that the algorithm by Jiang and
Claramunt [15], which is based on a topological measure of network centrality, had consid-
erable potential (Section 4.2). However, several difficulties remained and not all of the
requirements could be fulfilled. Therefore, an in-depth analysis was carried out as to how
additional constraints and extensions could improve the results.

The main contribution of this paper thus consists of four extensions that address de-
ficiencies of the basic version of the centrality-based algorithm by [15] and lead to a sig-
nificant improvement of the results. In contrast to most previous studies, this research is
solidly rooted in requirements defined by production cartography, and based on experi-
mental evaluation using several large and diverse datasets from a real production environ-
ment. While this paper provides a condensed version of our proposed algorithm, the full
detail as well as additional experiments and map examples can be found in [33].

The remainder of this paper is organized as follows: in Section 2, an overview of re-
lated work is introduced. The basic centrality-based algorithm underlying our work is
then explained in Section 3. In Section 4, the requirements posed to an automatic selection
algorithm, as well as the resulting problems of the basic approach by [15], as well as other
pertinent algorithms [8, 19], are shown. In Section 5, four solutions to these problems ex-
tending the basic algorithm of [15] are described. Section 6 reports on the achieved results
and Section 7 discusses them thoroughly. Finally, Section 8 ends the paper with concluding
remarks.

2 Related work

According to [20], the existing road network selection algorithms can be categorized into
three major groups: (1) semantics-based selection, (2) graph-based selection, and (3) stroke-
based selection.

Semantics-based selection is the simplest of the three approaches. Streets are selected
in a ranked order according to their relative importance of attributes [20], such as road class,
length, or other qualifying attributes. While commonly applied in practice, particularly for
the selection of discrete feature classes such as settlements, such methods do not produce
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adequate results for most scales if applied to networks, as topological relationships are
largely ignored. This weakness explains why the approach is rarely used in the literature.

Graph-based methods manipulate road networks as connected graphs (for a short in-
troduction to graph theory, see Section 3). Graph-based selection was first introduced by
Mackaness and Beard [21], who also point out that map generalization requires under-
standing and modeling at the geometric, topological, and attribute levels. They have used
a so-called minimum spanning tree (MST) to select the most important streets while main-
taining connectivity between cities, which is a major advantage over a simple semantics-
based approach.

[29] used a graph-based approach that employs shortest path algorithms between
nodes in the network, which produce a set of rankings reflecting the importance of the
segments. In addition to MSTs, which are again used to maintain connectivity, the rankings
are thus used in map density reduction and generalization.

Jiang and Claramunt [15, 16] introduced a graph-theoretic approach that uses a line
graph (also referred to as dual or connectivity graph in transportation science [24]) and
centrality measures to determine the importance of roads.

Stroke-based selection algorithms were introduced by Thomson and Brooks [30] and
are based on the perceptual grouping principle of good continuation [31]. Segments are
grouped together such that each pair forms the smallest angle possible [31], which results
in long, linear segments that extend through junctions [28]. The generated strokes are then
sorted according to some attributes, such as length or road class and the actual selection is
then performed according to this hierarchy [28].

Next to algorithms belonging to one of the aforementioned groups, there also exist other
approaches. Mesh-based algorithms, which make use of the areas formed between roads,
were introduced more recently [8, 14]. Li and Zhou [19] improved upon the approach by
using mesh-based algorithms in conjunction with a stroke-based algorithm to handle areal
and linear features separately. An entirely different approach is the agent-based approach
for road selection by [23].

Based on thorough testing in collaboration with a related project [3, 4], we decided to
use a stroke-based centrality approach as a basis for our work, as it has shown the most
promising results for small-scale target maps. Interestingly, if the target maps are in the
medium scale range, such as in the project by Benz [3,4], where a target scale of 1:50,000 was
used, it was found that the best among the existing algorithms was the integrated stroke-
mesh algorithm by Li and Zhou [19]. Intuitively this makes sense, since at medium scales,
rather fine-grained structures such as individual meshes or strokes of the road network
still need to be maintained, which favors the stroke-mesh algorithm by Li and Zhou [19].
Conversely, at small scales, the road network is increasingly focused on the main hubs, and
thus a topological centrality measure used by Jiang and Claramunt [15] provides a good
estimate of these hubs.

3 The stroke-based centrality approach

The approach that serves as the main basis for our methodology was first proposed by Jiang
and Claramunt [15,16] and is based on graph-theoretic principles discussed by Mackaness
and Beard [21], as mentioned in Section 2. In graph-theoretic approaches, the road network
is seen as a graph, where the road segments represent the edges, while junctions (or end-
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Figure 2: Following the principle of good continuation, the segments of the network to the
left are concatenated as shown on the right (based on [35]).

points of segments) represent nodes. Although it would be possible to build an algorithm
on the segment level (i.e., on the primal graph of the road network [24]), this does not
represent the network well compared to how humans see a road network. A cartographer
does not assess the importance of individual segments, but of interconnected roads as a
whole—the algorithm should do the same. It should not keep or eliminate individual seg-
ments, but entire roads. However, road names—which were used in the original algorithm
by Jiang and Claramunt—are not always available in topographic databases and it is not
always advisable to generate roads based on road names alone [35]. That is the reason
why the approach presented in this paper builds upon strokes, which were introduced by
Thomson and Richardson [31]. Hence, our algorithm is a combination of the graph-based
and stroke-based approaches.

3.1 Strokes

Strokes group together individual road segments by means of the conceptual grouping
principle of good continuation [30]. If translated to an algorithm, this essentially means
that at each intersection, the angle between all segments is calculated and pairs of segments
are grouped together based on their angle. In Figure 2, an example of such a concatena-
tion is shown. For deciding which segments to concatenate, the algorithm examines the
angle between each possible pair of segments and chooses the pair-combinations having
the smallest angle in between. While the original proposal consisted of solely evaluating
the angle of two segments, others have included additional attributes, such as the class of
the road [35].

3.2 Line graph

After generating the strokes, a line graph is created. In such a representation of a network
graph, edges become nodes and nodes become edges, as commonly understood in trans-
portation networks [24]. This means that each node represents a stroke, potentially consist-
ing of multiple segments. The edges represent the intersections between the strokes. Such
an example is shown in Figure 3, where a road network G is shown, consisting of various
segments and colored strokes. The line graph representation H , based on the strokes of the
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Figure 3: A road network with colored strokes and its line graph (based on [18]).

primal graph G, is shown in black. It is important to note that each stroke is mapped to
exactly one node, as this forms the basis for the centrality calculation.

3.3 Centrality and centrality measures

Based on this line graph, different centrality measures can be computed which describe and
rate a node’s importance in the network. Because nodes represent the generated strokes,
they directly determine their importance. While there exist various centrality measures,
which were primarily developed for the analysis of social networks [5, 12], the most useful
one for the selection of road networks is the so-called betweenness centrality.

Betweenness centrality expresses to what extent a node is located in between the short-
est paths that connect a pair of nodes [15]. It measures how important a node is for the
shortest paths formed between the other nodes. Thus, it indicates whether the node has
a bridging role in a graph. According to Brandes [6], the betweenness CB(v) of a vertex
v ∈ V , where V is the set of nodes and E the set of edges in a graph G, is defined as:

CB(v) =
∑

s,t∈V

σ(s, t|v)
σ(s, t)

where σ(s, t) is the number of shortest (s, t)-paths (also called geodesics) and σ(s, t|v) the
number of shortest (s, t)-paths passing through node v. If s = t, let σ(s, t) = 1, and if
v ∈ {s, t}, let σ(s, t|v) = 0 [6]. By convention, let 0/0 = 0. The measure can be interpreted
as the degree to which a node has control over pair-wise connections between other nodes,
assuming that the importance of connections is equally divided among all shortest paths
of each pair [6].

Other measures, such as closeness centrality (the average distance of a node to all other
nodes) and degree centrality (the direct links of a node) can also be used to further describe
the rank of a road in a network. However, both closeness and degree centrality are not
especially reliable in determining the hierarchical importance of a stroke in a network [34].
Degree centrality can be used to locally determine the importance of a stroke, but it is not
suited for a more global evaluation of the network. While closeness centrality is a global
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measure, it is not well suited to determining whether a road is structurally important. Be-
tweenness centrality, on the other hand, can be used to identify roads which take a bridging
role between different (topological) shortest paths, and thus in the entire network [18]. The
actual selection is then achieved by simply setting a threshold on the centrality values, and
selecting those strokes that exceed the threshold.

4 Cartographic requirements and initial assessment

4.1 Cartographic requirements

The cartographic requirements of the final product (i.e., the pruned road network for a
target scale of 1:200,000) act as constraints under which the algorithm must operate [2, 13].
Constraints do not define how a solution has to be reached; they simply define aspects
that may not be violated: the fewer constraints a particular solution violates, the better the
algorithm that produced it [13].

Extensive discussions with swisstopo revealed several hard and soft constraints. Hard
constraints can be verified relatively easily using computational methods, while soft con-
straints allow a wide spectrum of different solutions and need to be evaluated using quali-
tative methods. For the target scale of 1:200,000, a total of eight constraints were formulated
(Table 1). These constraints have been defined in the context of swisstopo map production.
However, it is important to note that they are nonetheless typical of the kinds of constraints
and requirements that are commonly used in production cartography [11,26,27]. The func-
tion of transportation networks is universal: to connect places and provide accessibility.
Thus, the constraints have been formulated with a focus on connectivity, and even seem-
ingly “Swiss-style” constraints such as S1 and S2 can be adjusted to the particular mapping
situation at hand. We therefore expect that our set of constraints can be easily adapted to
other environments of topographic map and database production.

The inclusion of all highways and expressways is a requirement set by swisstopo and
should be met under all circumstances, as the highways represent the most important roads
in a small-scale map. Additionally, one should obviously be able to reach the entries and
exits of the highways, which is why an additional constraint was added that ensures the
accessibility of the highways. Furthermore, no roads should be disconnected, which means
that no isolated roads are allowed. As a last hard constraint, the inclusion of dead-ends is
prohibited as they deteriorate the navigability of the road network. A topological algorithm
can check all of these hard constraints easily.

As soft constraints, mainly rather general statements were used. Nevertheless, this does
not mean that they are in any way less important. In fact, the first soft constraint, which en-
sures that the overall thinning of the road network is appropriate for the target scale, could
be considered as the most important constraint. The second and third soft constraints,
which consider the general structure of the network, are intended to ensure that also the
appropriate roads are selected in the result. Finally, as a last constraint, the inclusion of
important link roads needs to be ensured. The soft constraints cannot be checked easily by
an algorithm. One has to resort to visual inspection instead.
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H1 Hard All highways and expressways and everything related to them (such as
entries and exits) must be included in the generalized map.

H2 Hard The entries and exits to and from the highways must be directly con-
nected to the road network.

H3 Hard The road network must be completely connected. That is, from every
point in the network, one has to be able to reach every other point in the
network.

H4 Hard No dead-ends may exist in the final result.
S1 Soft The overall thinning of the network needs to be appropriate for the tar-

get scale of 1:200,000, comparable to swisstopo’s VECTOR200 database
product.

S2 Soft The general structure of the road network needs to be maintained.
S3 Soft Larger towns and cities should still be identifiable in the road network

of the final map.
S4 Soft Important link roads need to be maintained in the pruned road network.

Table 1: Constraints used as requirements to obtain the road network at the target scale of
1:200,000.

4.2 Initial assessment

Figure 4 shows the source data of the transportation network in one of the four test ar-
eas used in this project. Figure 5 depicts the corresponding result that was obtained by
computing the betweenness centrality for each stroke in the network and selecting strokes
above an appropriate threshold value, as in the basic centrality approach of Jiang and
Claramunt [15, 16]. However, as explained in Section 3, strokes were used for centrality
computation instead of named roads, since road names are often not available in spatial
databases.

At first glance, this basic algorithm performed rather well in this test area, which con-
tains rural areas in the northwest, a city (Lucerne) in the eastern part, and a rather moun-
tainous area (manifested by a network of trails and paths) towards the south. It can be seen
that most of the highways as well as major roads have been retained. Thus, the algorithm
succeeded in finding and selecting some of the most important roads. However, the result
is clearly of insufficient quality; it could not be used in a map production process. The
basic algorithm is unable to meet the requirements defined in Table 1. One of the main
problems is that many dead-ends are created as a result of the stroke-based selection that
relies solely on thresholding the centrality measure. It is evident that such dead-ends are
unwanted in a high-quality map product. Yet, they cannot simply be deleted as this would
result in the loss of a large and important portion of the road network. Another problem
is the heterogeneous density variation of the road network. While a slightly higher road
density in urban areas is not a bad thing, the resulting density of the city is clearly too high
compared to the more rural areas. Many unimportant and rather small roads have been
retained in the urban area.

Figure 6 shows the result obtained with the integrated stroke-mesh algorithm intro-
duced in [19]. Obviously, problems can be seen here as well. While the problem of dead-
ends appears to be even more serious at a first glance, this is not really the case, as they
are, in contrast to Figure 5, “real” dead-ends (i.e., they also appear in the source dataset).
A simple truncation of these would in fact be identical to a purely mesh-based approach
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Figure 4: Transportation network of the TLM3D source dataset in the Lucerne test area.
Highways shown by broad, orange lines; major roads (> 4 m) by red lines; minor roads
(2–4 m) and paths by black lines; and trails (< 2 m) by light blue lines. (Data c© swisstopo)

as in [8, 14]. Thus, an integrated approach at this scale does not make a lot of sense, as
its main feature—the handling of line-segments in addition to meshes—is unwanted at
smaller scales, despite the fact that it is an advantage in large to medium scale maps [4].
Another weakness of the integrated approach is that the density variation of the network
is not adequately represented. While the purely centrality-based approach of [15, 16] has
difficulties in reducing the density of urban regions, the integrated approach [19] reduces it
too severely: the city of Lucerne effectively disappears from the network. Finally, it can be
seen that several major roads end abruptly. Thus, the algorithm fails to identify important
roads in many cases.

In sum, the cartographic performance of both algorithms is mixed: on the one hand,
many relevant roads were extracted from the source dataset; but on the other hand, many
problems are still present, to which no simple solutions exist within the scope of the ex-
isting algorithms. Nevertheless, the analysis of the preliminary experiments enabled us to
decide to use the stroke-based centrality algorithm [15, 16] as the basis of our further de-
velopments: its results as well as the underlying concepts better reflect the requirements of
small-scale mapping, and thus showed more potential for the scale range targeted by this
project. As mentioned in Section 2, we found in a related project that, conversely, the inte-
grated stroke-mesh algorithm [19] has more potential for medium-scale maps. In the next
section, several enhancements to the basic algorithm of [15, 16] are introduced to improve
upon the above problems.
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Figure 5: Result of the basic centrality algorithm [15, 16] in the Lucerne test area, based on
the original data shown in Figure 4. (Data c© swisstopo)

Figure 6: Result of the integrated stroke-mesh algorithm by Li and Zhou [19] in the Lucerne
test area, based on the original data shown in Figure 4. (Data c© swisstopo)
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5 Enhancements to the basic approach

In order to enhance the stroke-based centrality approach, solutions to a number of different
problems have been developed. The methods as well as the effect they have on the selection
result will be expanded on in this section.

5.1 Detection and collapse of roundabouts

5.1.1 Problem definition

Roundabouts pose a problem in the stroke generation process. Figure 7 demonstrates their
detrimental effect: each roundabout forms a stroke by itself, if the purely geometric ap-
proach of stroke generation is used. As a result, incoming strokes are disrupted and their
continuity impeded.

[32] and [34] also recognized this problem and incorporated two different methods in
their approaches to deal with roundabouts. The one presented in [32] uses a measure of
polygon compactness to identify roundabouts. [34] use cluster analysis to detect complex
junctions, including roundabouts. A similar method was already used by Mackaness and
Mackechnie [22] and several other algorithms have been published (e.g., [25]). However,
the computing and cartographic performance of these methods was often not determined
systematically by their authors. Additionally, and most importantly, the existing methods
require additional algorithms (e.g., the creation of meshes), which would lead to additional
complexity of both the algorithm and the running time. Hence, a completely different ap-
proach was pursued in our work, which exploits and re-uses the already generated strokes
to detect roundabouts in the data set, thus enabling a highly efficient solution.

5.1.2 Solution

As has been shown in Figure 7, roundabouts tend to generate single, isolated strokes.
Hence, this circumstance can be exploited to analyze each stroke individually. As a first
step, each stroke is analyzed and tested whether it forms a loop. This can be done easily
by using graph-based methods. Because this also results in false positives, as there also
exist strokes that form loops but have nothing to do with roundabouts, the detected loops
need to be filtered afterwards. Three parameters, which are shown in Figure 8, are used to
describe roundabouts and filter the obtained list of loops:

(1) TotalLength: The total length of the segments forming the roundabout may not ex-
ceed 200 m.

(2) MaxLength: The maximum length of a single segment inside a roundabout may not
exceed 100 m.

(3) Connected Nodes: There must be at least two nodes that are connected to three edges
in the primal graph of the road network.

Experiments in four different test areas have shown that the first two parameters are suffi-
cient to extract the actual loops. The third parameter is needed to further reduce the result
set, as it ensures that the loop does not simply consist of a dead-end loop that loops back
to the same node.

After the roundabouts have been filtered, they are collapsed in the second stage of the
algorithm. This is a straight-forward operation, which simply computes the centroid of the
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Figure 7: The roundabout problem: they disrupt important strokes and impede their con-
tinuity. It is also important to note that the roundabouts form exactly one stroke in most
cases, which is a property exploited in the detection algorithm. (Data c© swisstopo)

Figure 8: The three parameters used to define a loop as a roundabout.
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Figure 9: The resulting strokes exhibit a much better continuity after the roundabouts have
been identified and collapsed. (Data c© swisstopo)

roundabout and extends the relevant neighboring strokes to this newly generated node. In
a last step, the strokes are reevaluated at the relevant positions. Figure 9 shows the same
extract as Figure 7 after the reevaluation. It shows that the strokes maintain a much better
continuity and are no longer split up. This is an important improvement, as it reduces
a multitude of splits in the selected result and generates more accurate centrality values.
The described algorithm was evaluated on four different map samples with a combined
segment count of over 130,000. It was able to detect 221 roundabouts in total, with no
false positives. The algorithm missed no roundabout in a strict sense, but was not able to
also identify plazas in cities which do not form circles, as the incoming streets form a flat
angle with segments of the plaza itself (three such cases have been identified in our test
areas). Because the running time of the algorithm is fast even for larger datasets of several
hundred thousand road segments (<1s, including the stroke generation and adaptation), it
is also viable for other applications where a quick detection of roundabouts is necessary.

5.2 Enhanced semantics for stroke generation

5.2.1 Problem definition

Traditionally, strokes are generated using only the purely geometric principle of good con-
tinuation. [35] came to the conclusion that the usage of thematic attributes in addition to
the principle of good continuation improves the result. However, the TLM dataset used
in this paper stores the road classes with a high degree of thematic granularity: instead of
the commonly used ordinal road classes (“Highway,” “Major Road,” “Minor Road” etc.),
classes are formed denoting the width of a road. Hence, what in other systems may be
called a “Main Road” often changes its class multiple times as it widens or narrows. This
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Figure 10: Detail of the mountainous Davos test area that contains many smaller paths and
trails. This snippet highlights the problem of the traditional stroke generation approach,
where the road class is largely ignored and a small angle threshold is used. The paths and
trails are broken up into many different strokes. (Data c© swisstopo)

is also the case at many intersections, where the road temporarily widens to accommodate
more lanes.

Another problem lies in the selection of the threshold angle. While many authors sug-
gested a threshold angle between 40◦ and 60◦ to maintain the principle of good contin-
uation [18, 31, 34, 35], an inspection of the data revealed that this might not be enough.
Figure 10 depicts such a situation in a mountainous area with winding roads, where the
strokes are split up multiple times: the road classes change at these positions and the angle
between the segments is above 60◦, which results in this picture.

As such, it is necessary to adapt the algorithm that builds the strokes to take into account
road classes, while allowing different classes to join together, as proposed by Thomson
[28]. At the same time, the angle threshold is increased—depending on the road classes
involved—to allow strokes to continue even when sharp turns occur.

5.2.2 Solution

As a first step, the detailed road classes defined in the TLM3D dataset were assigned to
one of the groups depicted in Figure 11. For example, roads having a width between 6
and 10 meters were assigned to the “Major Road” group. After each segment has been put
into a group, the concatenations between them are constrained such that only segments
belonging to the same group are allowed to be connected to the same stroke. This way, it is
possible to eliminate unrealistic concatenations of trails and major roads or even highways.
In addition, a distinct angle threshold is used for each group. While an angle threshold
of 60◦ produced good results for highways, major roads, and minor roads, the threshold
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Figure 11: This diagram shows the five primary road class groups, which were created
based on the width-based road classes used in the TLM3D dataset. Each group uses a
separate angle threshold in the stroke building process. The algorithm can be adapted in
order to either constrain or relax the conditions under which strokes are generated.

was clearly too low for the narrower paths and trails. As such, the angle threshold was
increased to 75◦ and 90◦, respectively.

The proposed hierarchical method describes a way to include thematic attributes (such
as the road class) during the stroke building process in a meaningful way. Using such a
hierarchical method, it is possible to constrain the different concatenation possibilities (e.g.,
we want highways to produce separate strokes), but it also allows different road classes
to be interconnected dynamically using separate thresholds (e.g., major and minor roads
are allowed to be concatenated, but with a stricter threshold). In addition, the algorithm
was implemented in such a way that an easy replacement of the strategies is possible.
Hence, it is entirely possible to use different stroke generators for urban and mountainous
areas, to adapt to the different road network characteristics. While the use of differentiated
thresholds for the various road classes may not represent a fundamentally new concept,
it nevertheless improves the strokes tremendously. As the strokes themselves build the
foundation of the centrality algorithm, the accuracy of the stroke formation will crucially
influence the quality of the road selection result.

The results of this hierarchical approach are visible in Figure 12, which depicts the same
area as Figure 10. It is evident that the continuity of the strokes was maintained much
better than in the purely geometric approach.

5.3 Adaptive threshold based on road density

5.3.1 Problem definition

It has been shown in Section 4.2 that the rural areas were thinned out excessively in the
pruned result when the basic approach is used. While a density difference in urban and
rural areas is desired to some extent in order to retain the structure of the original network,
urban areas remain still too dense after the initial pruning, considering the small target
scale (Figure 13). The reason for this lies in the way the betweenness centrality is calculated.
Because in cities there exist more (but short) strokes the betweenness centrality will reach
higher values in those areas. A solution to this problem is not straightforward, as there only
exists one global betweenness threshold, according to the basic algorithm. If the threshold
is increased more in order to reduce the number of selected streets, the rural areas, which
are already sufficiently pruned, will be thinned out even more.
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Figure 12: Same area as shown in Figure 10. In contrast to the purely geometric stroke
approach, the enhanced approach successfully concatenates the paths and trails in this area
and significantly improves the continuity of the strokes. (Data c© swisstopo)

Figure 13: (a) The area around the city of Langenthal (population: 15,000) after an initial
selection was performed using the improvements presented in Sections 5.1 and 5.2. (b) For
comparison the same area in VECTOR200, the digital 1:200,000 map of swisstopo. Note
that the density in the city remains too high compared to the surrounding rural area. (Data
c© swisstopo)
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Figure 14: Result of the DBSCAN algorithm in an extract from the Langenthal test area,
showing four different clusters. The centroid points of the individual street segments,
which were detected as lying in dense areas by the DBSCAN algorithm, are shown with
the respective convex hulls. (Data c© swisstopo)

5.3.2 Solution

To tackle this problem, one has to find a way of controlling the density of rural and urban
areas separately, by using different thresholds for the betweenness centrality. The initial
approach tested was to use an additional layer of settlement areas to indicate where a
different centrality threshold should be used. However, this proved to produce poor re-
sults (not every settlement area is affected). Thus, an approach using cluster analysis was
developed. It identifies dense areas of the pre-selected road network (i.e., after the steps de-
scribed in 5.1 and 5.2 by using the DBSCAN algorithm [10]. It thus identifies strokes which
are potentially affected, by clustering the centroid points of the individual street segments,
and adapts the betweenness threshold for these strokes. Figure 14 shows an extract from
one of the test areas and the clusters identified as being too dense by their convex hulls.
The centrality threshold of these areas is increased by a factor of 2 to 8, depending on the
test area, such that the most unimportant roads are excluded from the result.

Hence, this method offers a way to regulate dense areas (mostly towns and cities) and
rural areas independently of each other.

A disadvantage of this method is that it still relies on a stroke-based selection. This
makes it difficult to handle specific areas in isolation: short strokes, which are completely
contained in the areas can be handled easily, but longer strokes, which simply pass through
the areas cannot be simply removed, as this could potentially affect long strokes and hence
also areas which are far away from the dense cluster. As such, the adapted threshold was
constrained to strokes which are mostly inside of dense areas (in this case, at least 60%).
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5.4 Reconnection of dead-ends and disconnected parts

5.4.1 Problem definition

The generation of new dead-ends and disconnected network parts is a problem inherent to
all stroke-based selection algorithms. While solutions to the removal of disconnected parts
exist (for example, the usage of MSTs [34]), they do not solve the problem of dead-ends.
Even for large-scale products, a strict requirement for swisstopo is that no new dead-ends
are created except for special circumstances (e.g., to provide access to points of interest
[3,4]). This holds also for smaller scales, with the exception that cartographers are allowed
to insert dead-ends to hint at certain access roads or special relationships between roads.
The main reason for this treatment of dead-ends is that they deteriorate the ability of a map
to offer guidance to a user in finding appropriate routes. Furthermore, in a small-scale map
in particular, dead-ends are often not of high importance (e.g., access roads in settlements)
and offer no important additional information.

5.4.2 Solution

After pre-selection of the network according to the methods described in Sections 5.1 to 5.3,
the proposed algorithm additionally tries to reconnect dead-ends to the main network in
three steps, using multiple rules:

(1) The first step consists of simply finding all dead-ends in the test area. This is done by
finding nodes of degree 1 (i.e., nodes that only have one adjacent edge).

(2) In a second step, the algorithm generates all possible reconnecting paths from the
dead-end to the main network, using the unpruned network.

(3) After the reconnecting paths have been generated, the algorithm tries to find an opti-
mal solution. For this purpose, the list of the reconnecting paths found in 2) is sorted
according to the following criteria:

(a) The class of the reconnecting path should be at least as high as the dead-end
path. If such paths are found, they are considered first.

(b) If only paths of a lower road class are found, then the length of the reconnecting
paths is compared (i.e., shorter paths are preferred).

(c) As a final criterion, the direction of the path is considered (see Figure 15). The
reconnecting path should lead in the same general direction as the dead-end
path. This criterion acts as a hard constraint for the algorithm, as it would oth-
erwise select undesirable solutions. Consider a short dead-end path of a minor
road. If the algorithm would only look at the road class and the length of the
reconnecting path, a possible solution could be a simple U-turn in the opposite
direction. This is obviously not a desirable solution in most cases. Thus, the
proposed algorithm only considers reconnecting paths that do not violate the
direction requirement (Figure 15).

If the dead-end path cannot be reconnected (because the algorithm was unable to find
a suitable reconnection), the whole path will be deleted. Depending on the test area, the
algorithm showed a reconnection rate of up to 57%. This number includes dead-ends in the
proper sense (i.e., they already existed in the source database), for which no reconnection
is possible. Thus, the actual reconnection rate would be even higher.
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Figure 15: Conceptual illustration showing the principle behind the direction criterion used
to find a suitable reconnecting path. The end-node of the reconnecting path (green), which
reconnects the dead-end path (red) to the main network (blue), needs to fall inside the blue
area. If it falls outside this area, the reconnecting path is discarded, as it does not fulfill the
direction criterion. (Data c© swisstopo)

6 Results

In Section 4.2, we have shown that the basic stroke-based centrality algorithm was unable
to fulfill the requirements defined by swisstopo. This section reports on the results of the
improved approach, showing how the presented enhancements were able to reduce the
number of problems encountered with the basic algorithm.

The analysis of the results is primarily based on the hard and soft constraints presented
in Section 4.1. Table 2 shows various key statistics of the four test areas that were used to
evaluate the hard constraints.

Davos Lucerne Langenthal Zurich
Basic Impr. Basic Impr. Basic Impr. Basic Impr.

TS1 9,757 26,232 31,318 65,712
RS2 2,416 2,496 5,887 4,603 5.229 6,074 11,742 10,091
HS3 total 0 355 87 853
HS missing 0 0 86 0 87 0 491 0
HE4 total 0 46 16 95
HE disconnected 0 0 22 0 16 0 74 1
DP5 1 0 1 0 0 0 1 0
DE6 52 0 176 0 102 0 339 1
1Total Segments, 2Retained Segments, 3Highway Segments, 4Highway Entries
and Exits, 5Disconnected Parts (i.e., a path or sub-graph which is entirely discon-
nected from the main network), 6Dead-ends (real and generated)

Table 2: Key figures of the basic and improved algorithms for four test areas.
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While a quantitative analysis is often sufficient to evaluate hard constraints, it is not
possible to test whether the soft constraints were fulfilled in the same way. Hence, expert
cartographers conducted a qualitative evaluation of the results. The evaluation was con-
ducted by two swisstopo cartographers with several years of experience in the field. For
the analysis, they were given an entire day to be able to thoroughly analyze the results in
digital form and compare them to existing, generalized data. So, the approach taken was to
benefit from the deep knowledge and experience of the expert cartographers, rather than
achieving high numbers of test persons. We wanted the experts not only to rate the results,
but also let us know what was good or bad, and why and where. For each of the four test
areas, three different variants with varying thresholds were analyzed. The experts were
asked to fill out a questionnaire consisting of six questions, each of which aimed to evalu-
ate a particular soft constraint (Table 3). They were asked to rate each question according
to the rating scheme of [9], where the quality level is either rated as a) good, b) acceptable,
c) bad, or d) unusable, and provide reasons and examples for their rating. An overview of
the results for the best variants of each test area is shown in Table 4.

In the scope of this work, a good rating means that the swisstopo experts would consider
the resulting pruned map of the road network as usable in their production process with
none or only minor adjustments. A bad rating on the other hand means that the road
network needs major adjustments in the particular area. For instance, based on Table 4, the
rural areas in the Langenthal data set would need major adjustments if they were to be used
in swisstopo products. Note that none of the results was rated as “unusable” regarding any
of the soft constraints.

Related Constraint Topic Question (translated)
S1 General thinning How do you judge the general thinning of the road

network for the target scale of 1:200,000?
S1a Thinning in dense ar-

eas
How do you judge the thinning in denser areas
(e.g., urban areas)?

S1b Thinning in less
dense areas

How do you judge the thinning in less dense areas
(depending on the region either rural or mountain-
ous areas)?

S2 Structure preserva-
tion

How do you judge the general preservation of the
structure in the final result?

S3 Recognizability of ur-
ban areas

How well are urban areas recognizable in the final
result?

S4 Link roads How do you judge the preservation of link roads?

Table 3: Questions posed to the swisstopo experts in the qualitative assessment.

Figure 5 shows the result of the basic centrality-based algorithm of [15, 16], while Fig-
ure 16 presents the result of the proposed improved algorithm for the same test area (i.e.,
the Lucerne test area depicted in Figure 4). Figures 17 and 18 illustrate the differences
between the results of the basic versus the improved algorithm, respectively, for another
test area (a map of the source data is included in the Supplementary Material). It should
be noted that segments along the edges of the test areas (within a margin of 1 km to 5
km, depending on the test area) were excluded from the reconnection algorithm and the
affected dead-ends were neither removed nor counted in the statistics in Table 2, as these
are merely unavoidable edge effects and artifacts when dealing with cut out test areas.
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Topic Da1 Lu2 La3 Zu4

General thinning
Thinning in dense areas
Thinning in less dense areas
Structure preservation
Recognizability of urban areas
Link roads
1Davos, 2Lucerne, 3Langenthal, 4Zurich

Table 4: An overview of the experts’ opinions on the fulfillment of the soft constraints. Good
is shown in green, acceptable in blue and bad in red.

Figure 16: Result of the improved centrality algorithm in the Lucerne test area. Compare
with Figure 4 (source data) and Figure 5 (result of the basic algorithm). (Data c© swisstopo)

Supplementary Material. The Supplementary Material contains illustrations of the
original TLM3D data sets for all four test areas, as well as the results for the basic and the
improved version of the centrality-based road selection algorithm. The reader is invited to
have a look at these supplements, as they provide a better impression of the results when
applied to large test areas.
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Figure 17: Result of the basic centrality algorithm in the Davos test area (a map of the
source data is included in the Supplementary Material). (Data c© swisstopo)

Figure 18: Result of the improved centrality algorithm in the Davos test area. (Data c©
swisstopo)
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7 Discussion

The discussion of the results mainly focuses on the level of fulfillment of the constraints
defined in Section 4.1. The discussion is divided into an analysis of the hard constraints,
mainly based on the quantitative results of Table 2, and a qualitative analysis of the soft
constraints, based on the evaluation by swisstopo experts.

7.1 Hard constraints

The first two hard constraints H1 and H2 deal with the highways and the related entries,
exits and access roads. The most important features in road networks of small-scale maps
are indeed the highways, as they offer the user important navigational cues. As can be seen
in Table 2, the basic algorithm is unable to retain all highway segments for all of the test
areas (with the exception of Davos, which simply does not contain any highways in the
original dataset). Hence, highways do not necessarily exhibit a high betweenness central-
ity value. If they are counted as an important, non-deletable feature class, as is the case at
swisstopo, it is necessary to treat them separately. While a fix to this problem can be im-
plemented rather easily by simply forcing highway segments to be retained in the pruned
map, this approach further aggravates the problem of unconnected highway access roads,
which again make the highways less useful, as the user is unable to find routes to gain ac-
cess to the main network. As is evident in Table 2, the test areas that contain highways all
have many disconnected access points. In fact, the number of disconnected access points
is vastly larger than the number of connected access points. This makes the highways that
were retained even less useful. In contrast, the improved approach retains all highway
segments and was able to connect all highway access points in a reasonable way, which in
turn makes the whole highway network accessible and suitable for navigational purposes.
Hence, while the two highway related constraints were violated by the basic algorithm
quite heavily, they were fulfilled perfectly in the improved version, mainly because of the
reconnection algorithm presented in Section 5.4. Only one highway access point in the test
area of Zurich remained disconnected.

The hard constraints H3 and H4 deal with the general connectivity of the road network.
While many authors have quickly recognized that disruptions in graph-based and espe-
cially stroke-based selection algorithms pose a major problem (e.g., [34]), the creation of
dead-ends was largely ignored by the authors of previous work. However, when looking at
Table 2 and Figures 5 and 17, it becomes evident that dead-ends pose much larger problems
than disconnected network parts. They often disrupt long and important roads, hide the
true connectivity of the road network, and make them useless for navigational purposes.
Popular solutions to disconnected parts, such as MSTs, are unable to remedy this flaw in
the pruned network. By improving the stroke generation process and reconnecting dead-
ends and disconnected parts, it was possible to significantly improve the road networks in
all test areas. The quantitative analysis shows that while the basic approach was unable to
fulfill the connectivity constraints, the enhanced approach fulfilled them nearly perfectly,
with the exception of one remaining dead-end (which equals to the unconnected highway
access point mentioned in the discussion of the highway constraints).
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Figure 19: The road network in the town of Arosa in the Davos test area remains too dense.
As this has a considerable impact on a large part of the test area (cf. Figure 18), the thinning
in dense areas was not rated as good as in other test areas. (Data c© swisstopo)

7.2 Soft constraints

The qualitative evaluation, which was conducted by swisstopo cartographers (Section 6),
enables us to assess the fulfillment of the soft constraints laid out in Section 4.1. Table 4
showed an overview of the results of this evaluation.

Soft constraint S1 is about the general density of the resulting road network, which
should be comparable to the current 1:200,000 map product of swisstopo, VECTOR200. To
assess this constraint, three questions were used: the first one relates to the overall density
of the result and the other two to the density in urban and rural areas, respectively. For
most test areas, the general network thinning was rated as acceptable. For each test area,
different reasons were stated by the experts for this rating, which also relate to different,
non-optimal parts of the algorithm. In Zurich, for example, the density of several urban
areas was rated as too low, which could mean that the parameterization of the density
adaptation described in Section 5.3 needs further fine-tuning. While the overall density of
the Davos test area was rated as good, one of the urban areas of this mountainous region
was rated as too dense, which again points to a sub-optimal parameterization of the adap-
tive density algorithm (Figure 19). Because only a small part of the test area is affected,
it had no influence on the general rating, however. In the Langenthal test dataset, on the
other hand, the rural areas exhibited some unnecessary road network structures, which
could potentially be alleviated by further enhancing the stroke generator and the between-
ness calculation. In general, however, the experts were quite satisfied with the fulfillment
of the overall density constraint S1.

Soft constraint S2, structure preservation, was rated as very good across all test areas.
Important road structures were still recognizable as well as smaller paths and trails (Fig-

www.josis.org

http://www.josis.org


IMPROVED CENTRALITY-BASED ROAD SELECTION FOR SMALL SCALES 95

Figure 20: Extract of the Davos test area with missing part of an important link road marked
in green. (Data c© swisstopo)

ure 18). The non-optimal density of urban areas in Zurich did not impact the overall struc-
ture to the degree to have an influence on this rating.

Soft constraint S3 deals with the recognizability of urban areas. With the exception of
some urban areas in Zurich, this constraint was fulfilled in all the test areas. However,
the experts stated that this criterion is not especially important for small-scale topographic
maps, as other feature classes (such as land use or buildings) are used to support the iden-
tification of urban areas.

The last soft constraint S4, the preservation of link roads, is of particularly high impor-
tance. Generally, the fulfillment of this criterion was rated as very good by the experts.
They were surprised how well the algorithm worked, considering the fact that it did not
use any additional information except the geometry and the road classes, as link roads are
not always part of a major road class. Depending on the area, even small paths can be con-
sidered as link roads (e.g., in the mountains). Hence, the experts were especially impressed
with the Davos and Lucerne test areas, which combine several major roads, but also small
paths and trails, resulting in a rather complex and particularly diverse road network struc-
ture. The reason for the lower rating in the Davos dataset is due to the fact that one small
segment of the link road connecting an important major road was missing (Figure 20). This
also highlights the importance of this constraint and the thorough and critical assessment
process by the experts. The same is also true for the Langenthal test area, which also re-
ceived a lower rating as a result of a relatively short removed road that is considered as an
important link road.
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8 Conclusion

The automation of the selection of road networks has attracted considerable research inter-
est over the past two decades, as many NMAs are hoping to be able to derive smaller-scale
maps from a single, detailed database. Furthermore, the selection of the road network is of
fundamental importance in map generalization, owing to the fact that the road network is
among the dominant feature classes in topographic maps, and that the selection operator
forms the basis of all subsequent generalization operations. Nevertheless, road network
selection is a non-trivial process, as one has to deal with a coherent network of roads, each
having a particular shape, angle, orientation and length [7]. Consequently, different ap-
proaches to this problem exist and no single algorithm has been able to establish itself at
the top so far. Moreover, most algorithms have not been tested on large, diverse datasets
and against real production requirements.

The work reported in this paper resulted from a collaboration with the Swiss national
mapping agency, swisstopo, and has thus been grounded in production-driven require-
ments, which is different from previous research. Despite the collaboration with swisstopo,
however, the aim was to define requirements and develop algorithms that were as generic
as possible, and thus transferable to the requirements of other mapping agencies, with dif-
ferent products. The project started off by evaluating several methods from the literature
on large datasets and against the requirements defined in Section 4.1. Among these ex-
isting algorithms the centrality-based algorithm by Jiang and Claramunt [15, 16] showed
considerable promise, yet did not meet all of the requirements.

After careful analysis of the weaknesses of the basic algorithm by Jiang and Clara-
munt [15, 16], we developed and evaluated several improvements to the basic approach,
four of which have been presented in this paper. It is important to note that some of the
proposed enhancements, such as the enhanced semantics or the detection and collapse of
roundabouts, can also be used in entirely different approaches, as they solve problems not
strictly linked to centrality-based selection. Thanks to our extensions, the basic centrality
approach was significantly improved to such a level that the swisstopo experts were largely
satisfied with the results.

While we were able to improve the basic approach, not all problems were solved satis-
factorily. In future work, the parameterization of the stroke generator as well as the adap-
tive threshold should be optimized. Additionally, research should focus on finding other
ways to adapt the network density in urban and rural areas separately in order to achieve
optimal results. One promising approach could be the combination of the stroke-based
centrality approach with the mesh-based approach [8].

Acknowledgments

We would like to thank swisstopo, in particular Cédric Métreaux, Adrian Böhlen, and Do-
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