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Abstract: This paper presents an illustrated, validated taxonomy of research that compares
spatial measures to human behavior. Spatial measures quantify the spatial characteristics
of environments, such as the centrality of intersections in a street network or the accessi-
bility of a room in a building from all the other rooms. While spatial measures have been
of interest to spatial sciences, they are also of importance in the behavioral sciences for use
in modeling human behavior. A high correlation between values for spatial measures and
specific behaviors can provide insights into an environment’s legibility, and contribute to a
deeper understanding of human spatial cognition. Research in this area takes place in sev-
eral domains, which makes a full understanding of existing literature difficult. To address
this challenge, we adopt a visual summary approach. Literature is analyzed, and recurring
topics are identified and validated with independent inter-rater agreement tasks in order
to create a robust taxonomy for spatial measures and human behavior. The taxonomy is
then illustrated with a visual representation that allows for at-a-glance visual access to the
content of individual research papers in a corpus. A public web interface has been created
that allows interested researchers to add to the database and create visual summaries for
their research papers using our taxonomy.
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1 Introduction

What makes some places easy to get lost in, but others eminently navigable? How does
the way streets are laid out in a city affect where people go within it? Answering these
and similar questions requires models that relate the spatial characteristics of an environ-
ment to human spatial behavior within that environment [16, 26]. The link between spatial
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characteristics and behavior has been well established, but most findings rely on qualita-
tive descriptors that make comparing findings difficult [65]. Comparing behavior to spa-
tial characteristics more systematically requires the formalization of those characteristics,
which we refer to here as spatial measures. Broadly, spatial measures are techniques and
methods for quantitatively measuring space and spatial relationships. Importantly, they
can move beyond classical metric understanding (e.g., distance and direction) and mea-
sure aspects such as relative centrality. They arise in several areas of research, perhaps most
prominently within the realm of space syntax [27]. They allow for different environments to
be directly compared in terms of their spatial characteristics, and to quantitatively compare
those characteristics to various spatial behavioral measures (e.g., wayfinding performance).

The primary motivation for understanding the relationship between spatial measures
and human behavior is to gain insight into the underlying mental processes that drive hu-
man behavior in space. Spatial measures can also be used as behavioral models directly
(i.e., to predict behavior in an environment) in fields such as architecture and urban plan-
ning [16, 24]. Understanding how spatial characteristics of an environment may influence
human behavior is of wider importance because it can provide insights into how to com-
pensate for difficulties in understanding an environment, such as during wayfinding, and
into how to create spaces that are more easily navigable. Almost everyone has become lost
in a confusing building at one time or another, and some places seem difficult to navigate
even if one has been there many times before [11]. What may be a mere inconvenience in
normal activity may become critical in emergency situations.

Despite the importance of this research domain, an overview of existing research to help
synthesize knowledge across disciplinary boundaries is missing (see Bafna [2], Carlson et
al. [11], and Dalton et al. [15] for existing reviews in the area). We use the visual summary
approach, adapted from Mason et al. [41] to create an illustrated taxonomy that is intended
to enable such an overview. This method involves the manual review of selected literature
to construct taxonomic categories, which are represented in a diagram called a visual sum-
mary. Literature is selected according to its relevance as judged by the authors, with the
intention of capturing the breadth of the target research area. Once a paper is classified, a
visual summary can be made to show which categories it contains. A series of visual sum-
maries then allows a user to quickly compare a series of papers according to their content
(see Figure 5 for an example). We have implemented a web interface which allows authors
(or other interested parties) to classify literature and create visual summaries themselves,
which consequently will grow the database of classified literature and, over time, will allow
for increasingly detailed analyses.

The remainder of the paper is structured as follows: Section 2 provides background on
research that measures space in order to predict human behaviors and discusses the need
for a novel taxonomy, and our selection of the visual summary method. In Section 3, we
cover the methods for creating the taxonomy and visual summary. Section 4 presents the
final visual summary design and the definitions for the categories illustrated in the visual
summaries, discusses categories that were considered but not included, and then reports
the results of our inter-rater validation tasks. We then give an example of a visual summary
applied to a single piece of literature, and a user-centric example of how multiple visual
summaries can be compared and research patterns identified. We also briefly describe the
open-access web interface that allows users to browse the existing database and create their
own visual summaries. In Section 5 we provide an outlook on potential extensions of the
method and use of the database of literature.

. ] ..
° WWW.JOS15.01rg


http://www.josis.org

QUANTIFYING SPACE, UNDERSTANDING MINDS 97

2 Background

In this section, we will review key trends in environmental cognition and spatial measures
research in order to provide some context to the taxonomy and visual summary we have
created. This section is kept deliberately short, as a significant amount of research is re-
viewed in the course of explaining the taxonomy itself, in Section 4.1.

2.1 Environmental cognition and spatial measures

A fundamental challenge in this area of research is that human spatial memory structures
are distorted, and that the degree and type of distortion can vary with the spatial properties
of an environment [17, 67]. Following Golledge [22], we refer to these spatial memory struc-
tures as internal representations. Since the biological basis for spatial information storage is
not thoroughly understood in humans, “internal representations must be inferred from
one or more external symbolic representations (e.g., sketch maps of a city) or from some
other forms of observable behavior (e.g., search behavior to find a specific location)” [22].
Direct observation of internal representations is currently not possible, so researchers must
instead examine behaviors which make use of them.

Spatial measures allow for more objective connections between spatial behavior and
the spatial aspects of the environment. The basic premise is: if a measure correlates well
with some spatial behavior within an environment, there must be some connection be-
tween how the measure represents (or operates on) that environment and how the human
brain does. However, this relationship is not easy to establish. There are many potential
stimuli involved in creating environmental knowledge, and individual strategies for activ-
ities such as wayfinding differ considerably [66]. This indicates that it may be necessary
to combine different measures to capture the variety and combinations of spatial aspects
used by humans in order to fully understand how internal representations are created and
used [20].

2.2 Spatial measures

The research in this paper is intended to bridge knowledge from several disciplines, but
is most closely related to the field of environmental cognition [17], which traces its ori-
gins to Lynch’s Image of the City [39]. Lynch provided much of the impetus for research
into the relationship between human understanding of an environment and the spatial
aspects of the environment itself. He proposed a deep connection between the structure
of an environment—in particular urban areas—and a person’s ability to understand that
environment, showing that some structures make places inherently more understandable.
He coined the term environmental legibility, which refers to the ease with which an envi-
ronment can be transformed into a series of mental images (i.e., internal representations).
Lynch identified nodes, paths, edges, districts, and landmarks as the salient elements for
environmental legibility and, consequently, for internal representations themselves. Im-
portantly, Lynch’s descriptors were qualitative, and therefore not true spatial measures as
considered in this research. They were derived from interviews with people who regularly
encountered those spaces (urban centers) and from sketch maps they made rather than
direct measurement of the environment. However, Lynch’s elements were an important
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early attempt to systematically understand how environmental aspects affect internal rep-
resentations.

Space syntax is perhaps the most prevalent research program within the domain of
spatial measures and human behavior research. Space syntax originated with Hillier and
Hanson [27], who were concerned with how societies could be understood through how
people arranged inhabited spaces, such as rooms within a building, or streets within an ur-
ban area [2]. In order to accomplish this, they created systematized abstraction techniques
that represent spaces with graphs, where sub-spaces are identified by nodes and connected
spaces linked in the graph. This allows the use of topologically-derived measures, such as
the degree of a node.

Space syntax has generated many methods for abstracting environments into graphs
and explored topological measures of those graphs, and compared them to a variety of
human behaviors. One of the earliest and most common abstractions is the axial map,
which breaks environments into inter-visible chunks represented by axial lines [27]. Axial
lines are the longest unbroken lines that can be drawn from one part of a space through
another, beginning with the longest possible line in an environment and continuing until
all spaces are accounted for within that environment. Axial line maps are often quantified
with a novel graph measure called integration, and compared to pedestrian traffic [27].
Integration is a form of network centrality, used for example in [33, 50], and is often coupled
with connectivity (degree of a node), as in [37, 47].

Other methods pioneered by the space syntax community include visibility graph anal-
ysis (VGA) [62] and segment analysis [61], as well as extensions to axial line measurement,
such as angular analysis [59] and extended axial lines [1]. The space syntax community has
likewise applied measures to a wide variety of human behaviors. For example, Asami et
al. [1] compared these measures to the number of stories buildings had to identify “local
centers” in historic Istanbul, and Baran et al. [3] compared walking behavior in neighbor-
hoods with different types of street networks identified through applying space syntax
measures. Such works reflect the traditional focus of space syntax on sociological under-
standing, but space syntax researchers have also branched out into explicitly cognitive re-
search.

According to Bafna [2], space syntax moved towards spatial cognition because it “has al-
ways sought to examine the relationship between behavior and space by examining behav-
ior not merely with respect to its local setting (in which the perceptual typically dominates)
but with respect to the global setting in which it occurs, where the cognitive dimension of
behavior comes into play by necessity.” Dalton and Holscher [15] discuss space syntax and
cognition research in detail, and point to Peponis et al. [51] as the first synthesis of space
syntax and cognitively-aware research. Notably, Montello [44] has critiqued space syn-
tax’s approach to cognitive problems, but nevertheless praised its generation of methods
for quantifying space. Perhaps unsurprisingly, spatial measures derived from the space
syntax community continue to be used in cognitively-focused research, such as Holscher
et al. [29] and Li and Klippel [37].

Quantitative spatial measures that are applied to human behavioral problems are rel-
atively rare outside of the broader space syntax community. Two notable examples are
isovist analysis and interconnection density (ICD). ICD was developed by O’Neill [49],
who compared different environments quantified with ICD to participant performance in
those environments. Li and Klippel [37], built upon O’'Neill’s work by combining ICD with
space syntax analyses.
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Isovists were invented by Hardy [25], but named as such by Tandy [57]. It was
Benedikt [5], however, who created and popularized methods for quantifying their at-
tributes, as well as extending the concept to isovist fields. Isovists measure the properties of
visible space across an environment. A single point isovist is a polygon that represents the
viewable area around a single point in an environment, essentially equivalent to a view-
shed in a geographic information science context [63]. In order to account for the more
natural limited perspective of humans, partial isovists with restricted viewing angles have
also been used [42]. Since isovists are treated as polygons, they can be quantified with at-
tributes such as perimeter, area, number of points (corners), and ratios of those attributes to
one another. Successful applications of isovist measures in environmental cognition prob-
lems include Wiener and Franz [65], and Meilinger, Franz, and Bulthoff [42]. The former
had participants navigate to the point in a room with maximum visibility and rate experi-
ential properties of spaces. In the latter, participants navigated a virtual city and had their
route and landmark knowledge tested. Isovists also inspired attempts to assimilate ideas
about how to quantify visibility with space syntax measures, most notably in visibility
graph analysis [62].

2.3 The need for a taxonomy

While a considerable amount of work has been done in different disciplines along the lines
of comparing behavior to quantifiable aspects of space [65], few attempts have been made
to systematically understand if and how approaches differ [16]. Zimring and Dalton [67]
note that despite progress made in environmental cognition, “as with many multidisci-
plinary fields, however, communication among researchers is uneven.” While discussing
the problem of relating environmental layouts to human behavior, Franz and Wiener [20]
state that a unifying framework for measurement methods is needed to account for the
complexity of the real world. More practically, combinations of spatial measures promise
to capture more salient aspects of the environment at once, but the plethora of existing
measures makes the path forward uncertain. Despite the call for one within the literature,
a comprehensive understanding of the progress accomplished in this already complex area
has remained elusive.

2.4 Visual summaries

The current lack of a big-picture view when it comes to spatial measures and human behav-
ior research indicates the need for a taxonomy, but how to go about creating and spreading
it to a wider audience? On both accounts we adopt the approach of Mason et al. [41]. For
a given field of literature, a taxonomy is systematically created, validated (see Section 4.3),
and illustrated (see Section 4.8). The first result is a robust taxonomy that provides context
for the target field. The second result is a design for a visual summary diagram that serves
as a template for summary diagrams for individual pieces of literature. These diagrams
illustrate the content of a paper (according to the taxonomy), but also display which cate-
gories it does not contain. This allows users to easily compare many pieces of literature by
using multiple summary diagrams, while remaining cognizant of the entire taxonomy.
These diagrams make the literature content more accessible by giving users carefully
designed visual access to it. This is intended to leverage the advantages of visual infor-
mation, such as enabling quicker information processing and better pattern recognition
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compared to textual information (see Mason et al. for a more detailed discussion [41]).
The power of visualizing information instead of displaying it in textual or numerical form
is well known, as explained by Bertin [6], Tufte [59], and Thomas and Cook [58], among
many others. Particularly relevant in this context is Larkin and Simon’s [36] work, which
elaborates in detail on “Why a diagram is (sometimes) worth ten thousand words.” But
as Mason et al. [41] point out, despite such work exhorting the ability of visualization to
assist in information comprehension, relatively few visual approaches have been taken to
summarizing research literature.

Work in knowledge domain visualization is a possible exception, as it is also aimed at
giving a visual overview of areas’ research by analyzing literature [7]. However, as far as
we are aware these approaches differ greatly from the visual summary method we adopt
(see Section 4.7 for a discussion of our method compared to automated approaches). Do-
main visualization often focuses on understanding the relationships between groups of
literature, authors of that literature, and larger topic areas (domains). In contrast, we em-
phasize the importance of portraying the content and concepts contained within individual
pieces of literature in addition to giving an overview of a research area. Domain visualiza-
tion often uses automated techniques to both analyze text and bibliometrically identifiable
information such as authorships and citations to construct an overview of comparatively
large corpora [7]. For example, Boyack et al. [9] uses over a million journal articles to con-
struct a visualization of all sciences. Borrett et al. [8] whose focus was network ecology, had
a somewhat more modest corpus of 33,900 articles.

The use of self-organizing maps (SOMs) [32, 55] is popular in domain visualization. A
recent example can be seen in Skupin et al. [56], in which over two million publications are
used to create a “map” of medical knowledge. In contrast, the affinity diagramming and
visual summary method we adopt uses manual review to yield a taxonomy of a highly
focused literature set, where the advantages of automation are more limited, and their ap-
plication could even be counterproductive (for a more detailed discussion, see Section 4.7).
For example, differing terminology among disciplines (e.g., graph versus network) can pose
challenges for automated text analysis methods.

3 Methods

In this section, we discuss our method as it has been adapted from Mason et al. [41]. This
includes how categories are generated using a modified affinity diagramming method, and
the construction of a visual summary.

3.1 Creation of hierarchical categories

To create the categorization, we utilize a modified affinity diagramming method, adapted
from Mason et al. [41] (see Figure 1), which is in turn based on the affinity diagramming
method used by Skeels et al. [54]. Affinity diagramming identifies a set of categories that
capture important themes and topics within a selected area of research by having experts
place concepts into groups. Mason et al. extended this approach to be iterative and based
on continuous literature evaluation, which we take farther with the addition of a naive
rater.
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Modified Affinity Diagramming
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desired field.

Figure 1: Modified Affinity Diagramming, adapted from Mason et al. [41].

The researchers review a corpus of literature within the field of interest, create topics
for the most salient aspects or themes, group them into categories, and create formal def-
initions for those categories. As more literature is read, categories are iteratively refined
and structured into hierarchies, until a classification hierarchy deemed comprehensive is
created. The comprehensiveness is evaluated via a classification task, in which researchers
assign categories to a selection of papers without consulting each other, then measure their
inter-rater agreement with Cohen’s Kappa [13]. In our adaptation, we use multiple classi-
fication tasks between authors with an additional classification task with a naive rater for
an outside perspective. The specific results of our tasks are discussed below.

3.2 The visual summary diagrams

Visual summary diagrams are used to illustrate the content of a piece of literature according
to our taxonomy, and idea adopted from Mason et al. [41]. Within the diagram, visual ele-
ments (arranged colored shapes) represent categories, and the overall design of the visual
summary illustrates the structure of the categories found for a field (see Section 4.8 for a
discussion on the design choices underlying the final diagram). Categories present within
the paper have the corresponding visual element highlighted, while those not present are
made less visible (but still legible, to give context of what was not contained within a pa-
per). Thus, a new visual summary diagram is created for each piece of literature reviewed
(see Appendix A: Additional Visual Summaries for examples) which shows the subjects
(categories) covered within the specific text. This allows for an at-a-glance evaluation of
how individual papers approach the field. Figure 2 shows our resultant visual summary
template for the entire field of spatial measures and behavior (i.e., the categories identified
within existing literature).

4 Results and discussion
In this section, we present our visual summary (Figure 2), which represents the categories

contained in the surveyed literature, as well as the definitions of those categories. Addi-
tionally, we discuss some of the categories which were considered and why they were not
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included, which includes topics we expected to find but that no current literature appears
to address. We also build upon Mason et al.’s method by increasing the use of validation
tasks, including using a naive rater, to ensure that the categories were not arbitrary or id-
iosyncratic to the authors. We will also discuss the visual design of the visual summary
diagram itself. We walk through an example visual summary for O’Neill [49] to give a
practical example of how categories are assigned. We then discuss our implementation of a
web interface that allows users to create their own visual summaries and contribute to the
corpus. Finally, two example use cases are discussed to illustrate how visual summaries
can be used for research tasks.

Visual Summary Template

Ordering
Topology
How

Measured Aggregated

SIJ ati a| Measured Entities

Aspect

Measures Single

Entities

Behavioral
Data

Figure 2: The final visual summary template for spatial measures and human behavior
research.

4.1 Category definitions

The categories for the classification are described below, split into two domains: spatial
measures and behavior. In order to ensure coherence in classification among different re-
searchers, it is necessary to define terminology used within the definitions to prescribe how
each category is to be applied. For example, the terms space and entity. Space specifically
refers to an area as a whole. This may be on different scales (e.g., a room, a building, a
campus, a city, and so on), but it will usually be the encompassing area of a study. Entity,
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on the other hand refers to a specific, distinguishable part of a space. This part may be a
specific (geographic) object, such as a piece of furniture within a room, a room within a
building, a building on a campus, or a district of a city. It can also be generic, referring to
location within a space that is not further explicitly specified.

In a case where a paper re-uses data from a previous study, that use is treated identically
to if it were original as a practical matter. Research that analyzes data from previous studies
or experiments and then also compares it with original data (data collected by the authors
specifically for the research conducted in the paper) is classified by taking the pre-existing
study or studies into consideration together with the new contribution. An example of
this occurs in Turner and Penn [60], in which the authors correlate the results of an arti-
ficial agent model to results of a previous study tracking the movement of human agents
conducted by Hillier et al. [28]. In the classification, this would result in the paper being
categorized as having both artificial and human agent (along with any other applicable
category).

4.1.1 Spatial measures

Measured aspect Beginning at the left of the diagram (Figure 2) and moving clockwise,
the first superordinate category within the Spatial Measures domain is measured aspect,
which represents what the spatial measure within an article means or intends to capture
about a space or entity. The subcategories are centrality, saliency, visibility, and complex-
ity/cost.

Centrality refers to the importance of an entity based on its spatial relation with other
entities. It can be established for structured (e.g., networks) and unstructured spaces. Cen-
trality can be local (based on information of surrounding entities selected by some criteria)
or global (based on information of all entities in a space). For example, Baran, Rodriguez,
and Khattak [3] compared space syntax measures of local and global centrality to walking
behavior in different neighborhoods.

Saliency refers to the distinctiveness or identifiability of an entity, relative to other enti-
ties. Nothegger, Winter, and Raubal [46], for example, developed a model that uses various
attributes, such as color and facade area, to create a single measure of saliency for buildings.

Visibility represents measures that capture the degree of visibility between one or more
entities to or from another entity or set of entities. This is what Benedikt [5] used in creating
a series of isovist measures to quantify the nature of visible space around a single point, as
well as proposing a series of methods to quantify visibility continuously across space.

Cost/complexity represents how comprehensible the internal structure of a space is (i.e.,
how easy it is to understand a space) or the mental or physical difficulty of traversing a
space (i.e., how easy it is to navigate and/or move through a space to a desired destina-
tion). Measures that attempt to measure cost/complexity are often derived from a space’s
components. O’Neill [49], for example, was interested in the effect of average intersection
complexity on wayfinding task performance in relatively small scale spaces (sections of a
library). Richter [52] combined different aspects of a road intersection (such as number of
branches and segment lengths) to define a measure for that intersection’s cognitive com-
plexity.

Note that if authors measure some aspect by combining individual measures that cover
other aspects, all aspects are marked in the classification (rather than just the final result
of the measure). For example, Nothegger, Winter, and Raubal [46] utilize several environ-
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mental aspects, including visibility, to yield a landmark saliency measure. In that case,
the paper is considered in the classification to include both saliency and visibility as the
measured aspects.

How measured? How measured is the second superordinate category, which captures the
actual mathematical structure used to derive values, outside the context of what aspect is
being measured. This category is important to classify basic information about methodolo-
gies outside the intention of the measure.

The geometry category accounts for quantitative (numeric) measuring of geometric
properties such as shape, size, angle, and metric distance. Examples include angular
change [1, 60], and metric distance [45].

Ordering refers to measures which assess linear/circular order of a finite number of
entities, also without measuring metric properties of distance or angle. Richter and Klip-
pel [53], for example, use circular ordering information of an intersection’s branches and
the position of a landmark object within that order to determine that landmark’s location
relative to a turn at the intersection (e.g., whether a landmark is located before or after the
turn).

The category topology represents measures of spatial relationships between entities in
terms of connectedness or neighborhood without regard for geometric properties like met-
ric distance, angle, size, or shape. For example, Holscher, Brosamle, and Vrachliotis [29]
identify areas of high centrality, using space syntax measures, which abstract a space into
a graph. This graph abstraction allows for the purely topological relationships of the areas
within a space to be quantified, such as how connected they are to other areas, without
regard for geometric properties like metric distance.

Scale Scale, the last superordinate category within the spatial measures domain, indicates
whether a measure operates on an entire space or part of it. Note this is not scale in the
sense of map scale, and does not describe the size of the space.

The category of aggregated entities captures measures that summarize values from a mea-
sure for individual entities into (usually) a single measure for a larger unit. That is, sum-
marizing measures for individual intersections to a single measure for the whole route, or
calculating an average measure for a larger area from values for individual locations within
that area. An example of this is O'Neill’s [49] global ICD, which summarizes the complex-
ity of a space based on aggregating the number of decisions available at all intersections
within a space, resulting in a single (average) value for that space.

Single entities, on the other hand, comprises measures which provide values for indi-
vidual entities of a space and, thus, reveal differences between them. For instance, Baran,
Rodriguez, and Khattak [3] use an axial line map and integration to yield a centrality value
for each axial line, which defined segments of a pedestrian path network.

4.1.2 Behavior

Behavior is the second domain, representing those categories related to the behavioral por-
tion of the research—as opposed to that which measures aspects of the environment di-
rectly.
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Human context Beginning from the left and moving counterclockwise, human context cap-
tures studies which collect additional information on the characteristics of participating
human agents, such as familiarity, expertise, sex, or individual differences. Nothegger, et
al., [45], for example, had human agents with varying degrees of reported familiarity with
the study area identify landmarks at street intersections within the study area. These were
then compared to landmarks which were defined as salient by an algorithm constructed
for that purpose.

Collection The superordinate category of collection captures the two general ways behav-
ioral data is gathered.

The first category is experimental, which refers to data recorded by researchers in an
original study described in their paper. In papers categorized as such, researchers manip-
ulate variables, such as the environment participants operate in, or the kind of informa-
tion presented to participants, or the kind of participants, to observe causal relationships.
O'Neill [49] once again provides an example of this, in performing an original wayfinding
experiment that was conducted with human agents.

In contrast, non-experimental captures papers whose methodology is outside the realm
of experimental research. In those papers, data is collected without the controlled manipu-
lation of variables, such as with a survey, an observational study, or census data. Koohsari
et al. [33] is an example, utilizing mailed surveys that asked human agents to report how
often they walked to nearby public open spaces (i.e., parks) and how much time they spent
doing so.

Behavioral data The third superordinate category in this domain is behavioral data, which
stands for the type of data that captures the behavior of agents in some quantifiable way. It
contains four categories.

The first is recall; evaluations of how well a space and/or entities within that space are
remembered by agents. This is measured post-hoc, that is, after some task execution. It may
be measured on different levels of spatial knowledge, such as landmark, route, or survey.
An example of research fitting into recall comes from Omer and Goldblatt [48], who had
human agents mark the location of landmarks on an incomplete map of a space in which
they had previously performed wayfinding tasks.

The second category is preference, which accounts for research in which agents indicate
a preference given a set of choices, as in Weisman [64]. That paper described a task in
which human agents judge a series of highly abstracted floor plans in terms of their level
of general preference for the plan.

The third category is uncontrolled, which represents when research tracks an agent’s de-
cisions without a specific goal imposed upon the agents by the researchers. The researchers
do not measure performance (of any kind), but simply observe behavior, such as how many
agents pass by or enter a specific location, such as in Chang [12], who observed pedestrian
movement by creating “gates” at particular points in a physical space and measured how
many human agents passed through them. In addition, human agents passing through the
gates were randomly selected and their movement tracked through the space.

The last category within behavioral data is performance. In contrast to recall, this mea-
sures the observable performance during task execution, such as time to completion, route
optimization, or number of turning errors. O’Neill [49] contains an example of gathering
performance-type data. Human agents were used in a wayfinding experiment, and their
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ability to find a predetermined destination was measured in three ways: 1) time elapsed,
2) number of backtracks on route, and 3) number of wrong turns.

Agent The superordinate category Agent accounts for research using different beings
whose behavior or actions are observed (and compared to particular spatial measures).
Natural captures research which uses human agents, people used as test participants, as
in O’Neill [49], which had students perform wayfinding tasks.
On the other hand, artificial, represents research which uses agents whose actions are
intended to approximate human behavior, as in Turner and Penn [63], who used an agent-
based model in which the agents used visibility information to make movement decisions.

Environment Environment is the next superordinate category and represents the different
ways environment/spaces are experienced in the study by agents.

First, research can use physical spaces, an actual physical space as it exists in the real
world, as in O’Neill [49], who had agents perform tasks in a university library building.

Second, there are virtual environments, which are computer-generated spaces with or
without the rules of physical reality, such as a digital three-dimensional model of a campus.
One example of this is Meilinger, Franz, and Biilthoff [42], who had human agents experi-
ence a three-dimensional simulation of a town through an immersive 220° semi-cylindrical
screen.

The last environment category is external representation. This represents studies that
utilize an (often static) representation of a space, such as a floorplan, map, or series of
photographs, in addition to (or instead of) having agents interact in or move within a real
or simulated environment. Asami et al. [1] had designated experts select local centers in
Istanbul using a map of the city. O’Neill [49] had both “physical” and “external represen-
tation” environments. Human agents first experienced the environment through the use of
a series of photographs in order to familiarize them with the space before encountering it
physically.

Layout The last superordinate category within behavior is layout, which captures the type
of spatial structure or arrangement of the environment used within a paper.

The first is existing, which refers to a spatial layout found in the real world that could be
encountered in life, such as a street grid of a real place. For example, Holscher, Brosamle,
and Vrachliotis [29] had human agents perform tasks within a pre-existing building (a con-
ference center), while Meilinger, Franz, and Biilthoff [42] had human agents experience a
virtual model of the town of Tiibingen, Germany.

The second category is synthetic, which stands for when a paper uses a layout that is
designed specifically to test behavioral responses to environmental aspects, such as a maze
or idealized rectilinear street network. Dalton [15] did this by creating a virtual, idealized
urban form consisting of streets of all the same length, but a variety of intersection types,
which human agents then experienced through a computer simulation.

Rather than standing for a different type of layout, the category of multiple captures
studies that compare multiple layouts, that is, multiple different spaces (or multiple dis-
tinct areas within a space). In that vein, O’Neill [49] compared three different areas within
a library which varied in measured complexity, in order to validate the measure against
human behavior.
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4.2 Considered categories

Over the course of affinity diagramming many categories were created, deleted, and re-
vised. Importantly, there were categories we expected to find, and ways we anticipated to
structure the taxonomy that did not hold up under a close reading of the corpus. Some
absent categories seem to indicate there are under-researched areas that can be identified
with this method. If they begin to materialize in the literature, the taxonomy and visual
summary diagram can be updated accordingly (a possibility further discussed in Section 5).

One notable example of a conceptually sound category that was not present in the lit-
erature was three-dimensional spatial measures. Three dimensional measures seem to be a
neglected aspect of spatial measures research, especially in the face of the increasing com-
monality of three-dimensional geospatial data, particularly for urban environments [34].
While many of the papers attempted to capture three-dimensional information, this gen-
erally entailed abstracting the environment so that a two-dimensional measure could be
used. An example of this can be seen in Holscher, Brosamle, and Vrachliotis [29], who ana-
lyzed multiple floors of a building together by creating “dummy” connections to simulate
them all being on the same level.

Another example was dynamic layouts. Currently all encountered research seems to
assume that effectively an environment is static, or at least does not meaningfully change
during a task such as navigation. Conceptually, it is not difficult to imagine an environment
where the navigable space changes quickly, such as a maze with moving walls. Obviously,
this would be easier to implement experimentally in a virtual environment, but there are
real-life situations where the environment is dynamic, such as a street network prone to
accidents, or a burning building.

Some of the discarded categories had roots in common sense, but upon closer examina-
tion were too difficult to define satisfactorily. We make the assumption that if we cannot
effectively create a logically consistent definition, then a user will have an even harder
time parsing or applying it. Several proto-categories cut for this reason fell under a su-
perordinate category titled abstraction (or entity type). This would have referred to the base
data type of the representation, or the type of abstraction from the real world. Lynch [39],
for example, distinguishes paths, edges, districts, nodes, and landmarks. Golledge [22]
provides geometric components of spatial knowledge as points, lines, areas, and surfaces.
While common conceptually, actually distinguishing the different types within the litera-
ture is nontrivial. Several common measures operate partly by transforming between such
abstractions, such as axial line mapping in space syntax, which uses a linear representation
to then define a network on which graph measures are calculated [27]. In a similar vein,
isovist fields [4], account for various polygonal metrics for visibility at every point in a
space.

We were cognizant of the difficulty in creating objective criteria for assigning categories
given these complexities, and then informing users of these criteria. Accordingly, it was
decided to instead focus on the intent of the measures and only provide high level in-
formation in regards to methodology. This is represented in the measured aspect and how
measured superordinate categories, respectively. Another revision was to change global and
local in scale to aggregated entities and single entities. The basic problem was that distinguish-
ing between purely local and global depends on the reference frame, which would then
also need to be indicated in the category structure and visual summary. This was in fact
also considered, but seemed to entail strict but rather arbitrary delineations of particular
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scales. For example, when does one move from a neighborhood to a district, or from a city
to region?

4.3 Validation of categories

In order to verify the applicability of the proposed categorization, we undertook three dif-
ferent literature classification tasks for which inter-rater agreement was quantified via Co-
hen’s Kappa [13]. Cohen’s Kappa accounts for agreement that could be expected by chance
alone. Two rounds of classification were completed among three of the authors, with a
third round using one author and one outside “naive” rater only somewhat familiar with
the research area (a cognitive neuroscientist).

Kappa <000 0.00-0.20 0.21-0.40 0.41-0.60  0.61-0.80  0.81-1.00
Statistic
Strength of Poor Slight Fair Moderate  Substantial Almost
Agreement Perfect

Table 1: Guidelines for interpreting Cohen’s Kappa values [25].

Author-only classifications directly informed revisions to the categories. Ten papers
were independently classified in the first round, using a set of preliminary definitions cre-
ated in the affinity diagramming method described in Section 3.1. The authors’ results were
compared pairwise, with the following Cohen’s Kappa values for each of the three pairs:
0.66, 0.65, and 0.60. These values fall between “Moderate” and “Substantial” according
the guidelines for interpreting Cohen’s Kappa provided by Landis and Koch [35] (see Ta-
ble 1). This indicated the classification was not mature, and repeated disagreements, such
as consistent differences for particular categories, were analyzed and discussed, and the
classification revised. Some of the details of this discussion and its results are examined in
Section 4.2. Once the revision of the categories was complete, a second round using three
papers was completed. This was considerably more successful, with two pairs recording
identical Cohen’s Kappa of 0.80 (extreme high end of “substantial”) and one pair returning
a result of 0.94 (“almost perfect”) [35]. After a discussion, which focused on understand-
ing the remaining disagreements, and small follow-up revisions to definitions including
examples for each category, the naive rater evaluation began.

In the naive rater task one author and a naive rater categorized five papers: [30, 31,
37, 38, 65]. The naive rater was a cognitive neuroscientist, previously unfamiliar with the
classification, but somewhat familiar with basic research in the area. Both raters were given
the set of full definitions (see Appendix B: Category Definitions for the document used),
which included instructions covering particular scenarios that might be encountered, such
as authors using existing data to test a new method. Care was taken to select papers that
had not been used as examples within the definitions document. Additionally, an example
classification of O’'Neill’s paper [49] was provided, complete with a visual summary, seen
in Figure 3. Once again, agreement was measured with Cohen’s Kappa, which resulted in
a high value of 0.83 (the breakdown of the classification is shown in Table 2). While only
using one naive rater may not be ideal, we consider this to be a highly satisfactory result
that illustrates the categories identified are not idiosyncratic, but are generalizable ways of
understanding this research area that are also usable by non-experts.
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Wiener Li Holscher | lJiang Lu
[22] [27] [28] [50] [23]

Agent Natural
Artificial

Behavioral Recall

Data Preference

© Uncontrolled
Collection  Experimental

Non-Experimental

Environment | Physical

External
Representation
Layout Existing
Synthetic
Multiple

[HumanContext | B

Table 2: Results of the naive rater task. Green shows agreement on assigning a paper to a
category, blue shows agreement on not assigning a paper to a category, and orange shows
a disagreement on whether or not to assign a paper to a category.

4.4 Example visual summary

We return to the example of O'Neill [49] to demonstrate how our taxonomy functions in
practice, with the results illustrated in Figure 3. O’Neill measured the performance and
memory of students when wayfinding in a library, compared with complexity of the en-
vironment as defined by a simple network complexity measure called ICD. Note that the
appendix shows visual summaries for 16 other papers that have been classified.
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O'Neill 1991
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Figure 3: An example visual summary created for O'Neill [49].

Beginning from the top left of the visual summary (Figure 3), this paper has complex-
ity/cost as a measured aspect, as the ICD measure O’Neill uses is intended to summarize the
complexity of the environment. ICD does this by simple topology, summarizing the degree
of nodes (intersections; termed choice points) in the floorplan of the environments. Thus, the
topology and how measured categories are highlighted. Since the measure aggregates the val-
ues of all the choice points in an environment rather than singling out any individual value,
scale and aggregated entities are highlighted. For layout, multiple is flagged because three dif-
ferent environments within the library (with different complexity) were evaluated.Existing
is flagged because these environments already existed and were not designed for the task
by the researcher. For environment, the library settings were physical spaces (as opposed to
virtual), thus physical is highlighted. External representation is also flagged because O’Neill
used a series of photographs to give a “guided tour” of the environment to participants as
a pre-training task before the wayfinding component of the experiment.

The participants were graduate and undergraduate students, so natural is marked under
agent. Within behavioral data, both performance and recall are marked. The former because
the study recorded performance in the wayfinding task in the form of time to task comple-
tion, number of backtracks, and number of incorrect turns compared to an optimal route.
The latter is flagged because O'Neill also had participants draw a sketch map of the envi-
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ronment they navigated, and evaluated that map for completeness and accuracy. O’Neill
explicitly conducted an experiment (rather than a survey or other method), so collection
and experimental are flagged. Since O’Neill did not compare any aspect of the participants
(such as age, gender, or experience) other than the results of their experimental task, human
context remains un-flagged.

4.5 Web-based classification and analysis tool

In order to simultaneously bring our results to a wider audience of scholars and to build
our knowledge base, we are in the final stages of implementing a web interface for both
exploring and creating visual summaries.! Once a user is registered, they can create visual
summaries for new papers and add their bibliographic information via BibTex [18], which
is then added to the corpus database. The intent is that this approach will function as a form
of crowdsourcing, increasing the size (and therefore utility) of our corpus, and opening up
opportunities for future analysis.

Users can browse the existing database of visual summaries, and select papers by cate-
gory, so that only papers with the selected categories are displayed. An example use-case
of this feature is given in Section 4.6. In addition to manual visual comparison, the website
also has an interactive overview visual summary. Intended to give users a sense of larger
trends, this displays how often categories are present within the entire corpus database, or
a selection of that database. A screenshot of the current status is shown in Figure 4. Darker
segments indicate more popular categories.

Currently, users can select to show only papers within a date range (by year of publica-
tion), which can give an indication of trends by simply changing the selected range. More
selection features are planned, such as being able to select by author name.

4.6 Example use cases

One major strength of using a diagram to represent categories is that it makes comparing
literature straightforward. An example use case would be a researcher who is familiar with
a specific body of research, but looking to explore whether a specific idea has been pursued
outside that body. Using our web interface, they could select their topics of interest. For
example, they could be interested in the visibility of landmarks in virtual reality, and select
the appropriate subordinate categories (visibility and virtual). In the results, they could
look for unfamiliar names or unusual combinations of categories (such as the use of non-
experimental data collection).

Let us now take the perspective of another user, a first-semester graduate student who
is interested in work that examines navigational difficulty based on environment com-
plexity for the purposes of planning an experiment to base their thesis around. Using
our website, they query for literature that has complexity/cost measures and experimental
data collection. The visual summaries in Figure 5 are shown: O’Neill [49], Turner and
Penn [63], Dalton [14], Omer and Goldblatt [48], and two papers by Holscher with different
co-authors [29, 30].

Several patterns can be noticed immediately within the selected categorizations. First,
complexity/cost is often investigated jointly with visibility, but never with centrality. Ordering

1For the current state of implementation, see http:/chorophronesis-magicat.rhcloud.com/visualsummary/
home/
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Overview Visual Summary for
Spatial Measures and Human
Behavior Research

Geometry

The darker the segment, the more papers that include that category

Selected by

Figure 4: Screenshot of web interface. The overview visual summary for all papers, as
shown in our web interface (in progress). The darker the segment, the more papers that
contain that category. Users can mouse over segments to get an exact count of papers that
include it (displayed top right). Users can also use an interactive timeline to restrict the
display by publication year. Other features are planned, such as query by author name.

never appears, perhaps indicating that using it as an approach could be novel in this con-
text. Most research uses aggregated entities, but not all. All collection is experimental (since
this was one of the query terms), but one paper supplements this with non-experimental
data collection. The actual type of behavioral information collected varies considerably,
perhaps indicating to our graduate student that they need to consider the type of data they
would like to collect to refine their search (such as focusing on performance). Natural agents
(people) might be expected, but perhaps the only paper to use artificial agents (Turner and
Penn’s) might provide some insight as to how they can be employed. Similar to behav-
ioral data used, the type of environment varies, indicating another area that requires some
thought for further specification. Half of the papers examine both multiple and existing
layouts, which may indicate a logical direction for evaluation (as it appears to be a popular
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0'Neill 1991 Turner and Penn 2002

Spatial Spatial o
Measures Measures
Behavior Behavior

Nothegger et al. 2003 Omer and Goldblatt 2007
Spatial Spatial
Measures Measures
Behavior Behavior

Holscher et al. 2008 Holscher et al. 2012
Spatial oot o Spatial —
Measures Measures rmmurrl."
Behavior Behavior

Figure 5: An illustration of how multiple visual summaries can be used to compare papers
quickly. All papers share the categories of Complexity /Cost and Experimental (collection).

theme). However, the lack of papers that have attempted to use or compare existing and
synthetic layouts points to what could be the basis for an interesting experiment. Outside
of the categories themselves, our student could note that Holscher has at least two papers
and both are relatively recent, so his work might be especially relevant.
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While this example may be a somewhat idealized scenario, we believe it nicely illus-
trates the possibilities of our visual summary output for identifying themes and potential
avenues for future research.

4.7 Why not automated text analysis?

The modified affinity diagramming method used by Mason et al., and modified here, is
used in lieu of automated text analysis methods. This is primarily because we feel they
would not function well for our particular purpose: creating a robust taxonomy for a highly
interdisciplinary domain whose core literature set is not intractably large. Automated text
analysis methods still require humans to provide domain knowledge [21, 23], whether they
are used to identify topics within literature or assign topics (categories) to literature. In un-
supervised classification a person is still needed to make sense of the output of discovered
patterns, such as nominal topics [43]. Our analysis, i.e., the creation of categories, is most
closely analogous to topic modeling, the various approaches aimed at automatically extract-
ing “topics” from text corpora. For overviews on topic modeling, see, for example, Mohr
and Bogdanov [43] and Brett [10].

Similarly, automated assignment of categories of literature (a classification problem) re-
quires a person to define the categories to apply, and often to classify papers in order to
create a training set for the model [23]. Given that we are faced with a corpus that is both
comparatively small and rather heterogeneous, the effort needed to fine-tune automated
methods or training sets for them to produce sensible categorizations seems unnecessary
and wasted, particularly given that they would still be unlikely to capture all intricacies
and seeming contradictions in term use, for example. Theoretically the affinity diagram-
ming method does not even require the use of a computer, which is advantageous where
resources are limited or there is a lack of technical expertise. Still, the use of automated
methods for visual summaries may prove to be especially useful in some scenarios, an idea
we discuss in Section 5.

The advantages of the combination of affinity diagramming and visual summary can
further be seen when compared with a word cloud, a basic form of text analysis. A word
cloud displays common words from a text source, with the larger font used corresponding
to more common words (barring common words in English syntax). An example word
cloud created using www.wordle.net [19] is shown in Figure 6. The text used was the ab-
stracts from a selection of our corpus (the same selection is used in Appendix A: Additional
Visual Summaries).

A word cloud is a simplistic form of text analysis, but it clearly illustrates a funda-
mental challenge: the difference between words (as a group of characters) and their actual
meaning. For example, “graph” and “network” can be synonymous, or have completely
different meanings, depending on the context (i.e., a statistical graph). This specific exam-
ple is also discussed by Borrett et al. [3], who in the context of analyzing network ecology
literature had to adjust for multiple keywords and spurious phrases that included related
terms but were not directly of interest, such as “transportation network.”

This disconnect between literal text and meaning is an issue particularly for interdisci-
plinary work such as ours, where multiple conventions are in play. The variety of termi-
nology used within spatial cognition literature alone can be quite impressive: Golledge [8]
lists no less than twenty-one alternative terms for the concept of an internal representation
present in literature on spatial cognition. The value of a category structure created manu-
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Figure 6: A word cloud made using abstracts of literature within our corpus.

ally, especially in an interdisciplinary context, is that it inherently allows content and ideas
to be disconnected from the specific language used to describe them. This aspect cannot
currently be achieved with automated text analysis approaches of any kind.

4.8 Visual summary design

The design of the visual summary can be seen in Figure 2. According to Mackinlay [40], the
two most effective visual variables [6] for “perceptual tasks” using nominal data are posi-
tion and color hue. We focus on these two elements to represent the categorical meaning of
the elements in the diagram, while attempting to control for other visual variables, such as
size, and maintaining an aesthetic balance.

First, the diagram is split into two halves: the top half containing spatial measures
categories and the bottom half containing human behavior categories. The summary is
hierarchical from the inside out, so that the outside categories (represented with “slices”)
are subordinate to the inside categories. While the number of categories contained within
each half is different, we felt it was important to keep the halves the same overall size to
avoid the user assuming differing importance. Related category segments are grouped to-
gether, but not ordered. The inner ring of segments contains the superordinate categories,
while the outer ring contains subordinate categories. The sizes of the segments are deter-
mined by the subordinate categories, so that all subordinate categories are the same size
within each half. Superordinate categories are then sized to match the number of subordi-
nate categories they contain. This leads to some superordinate categories appearing bigger
than others. This may imply differing importance to some, but on the other hand ensures
that subordinate categories—which are more salient—keep the same size, and text in the
diagram remains readable while the overall diagram still has a reasonable size.

Color hue is the other major visual variable used, with “warm” (more yellow or red)
colors for human behavior visual elements, and “cool” (blue and green) colors for visual
elements relating to spatial measures. Colors within those ranges are then assigned to cate-
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gory groups, with all the subordinate categories having the same color (to avoid indicating
importance), and the superordinate category segment having a slightly darker tone. The
circular shape was chosen to allow for segments to be added and removed in case of future
revisions, without a need for a complete redesign. For example, if dynamic environments
as discussed in Section 4.2 were to be covered in future literature, they may be added to the
“Environment” slice.

The visualization was refined and designed as the categories were refined. The empha-
sis of the design is on clarity of information. Having a working visualization also helped to
find the right level of granularity of representation for the intended purpose. Too general
and the diagram fails to provide useful information; too detailed and users will have dif-
ficulty finding what they are looking for. Two levels of hierarchy were selected over more
detailed alternatives, since we believe this is a reasonable balance between visual search
difficulty and level of detail.

5 Future work

The inter-rater agreement tasks speak to the validity of our taxonomy, and we believe the
visual summary provides a valuable way to access and understand that categorization.
However, there are opportunities for future research, both in terms of extending and ap-
plying our existing visual summary and taxonomy, and improving the method.

As discussed in Section 4.5, we are finalizing the implementation of a web interface for
our visual summary of spatial measures and human behavior research. The site will allow
scholars to view existing visual summaries, get an overview of frequency of categories in
the database, and create their own visual summary for a given paper, which automatically
adds that paper to the database. While currently the analytical features are still limited,
we are planning to implement more advanced tools. There are many classic bibliometric
analyses that would be interesting to combine with the categorical information of our tax-
onomy. For instance, which journals or authors are associated with which categories, and
how those associations change over time.

The web interface offers more opportunities for further evaluations of the taxonomy
and the visual summary. For example, crowdsourcing-style evaluations of the taxonomy
could be performed by asking multiple users to classify the same papers and then compar-
ing their mutual agreement across papers and categories. In theory, an automated system
for creating visual summaries makes creating different representations of the same data
relatively easy, making an evaluation of different visualization methods possible.

We have made a considerable effort to identify intuitive categories that currently exist in
spatial measures and human behavior literature, however we fully expect new categories
to be needed to account for future research directions. Any changes will require revision of
the taxonomy, visual summary diagram, and the web interface. In Section 4.2 we identified
several categories we expected to find but did not, pointing to potential research direc-
tions. No doubt continued use of the website will bring new possibilities to light in time.
Fortunately, the visual summary diagram was designed with the possibility of adding cat-
egories through additional segments, as we noted in Section 4.8. A deeper challenge will
be re-classifying our existing corpus to account for the new categories. However, it seems
that many potential categories will be completely new in more recent work, so that past
papers will simply not have that category assigned. Existing visual summaries can then be
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updated automatically within the web interface. In the unlikely event that new categories
are found which require a complete review of the existing corpus, a manual review would
be necessary, which would be time consuming but not impractical.

While we have discussed the advantages of using the modified affinity diagramming
method over automated text mining, we believe there might be potential in exploring ma-
chine learning methods to support the categorization process. For example, cluster analysis
could be used to help find previously unrecognized subfields of research, or jump start the
categorization process, especially for broader or more complex fields. Despite the potential
of extending the method, we believe the current iteration provides a helpful, easy to com-
prehend way to both create an understanding of a field of literature (through the creation of
categories) and communicate that understanding in an effective way that enhances readers’
understanding of single papers and entire fields.
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Appendix A: Additional Visual Summaries
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Appendix B: Category Definitions

Essential idea: This classification’s central purpose is to help understand the state of the re-
search literature regarding how quantifiable aspects of space influence human behavior in
space. Accordingly, the classification is split into two major subsections: Spatial Measures

and Behavior.

Spatial
Measures

Human
Behavior

Ordering

Topology

How \\_
Measured Aggregated
Measured Entities
Aspect
Single
Entities

How to apply the classification scheme

e General advice: Be inclusive! Anything that you believe fits the study at hand should

be marked in the classification. In particular, the following guidelines apply.

e Measures within measures: If authors measure some aspect by combining individual
measures that cover other aspects, mark all these aspects in the classification (rather
than just the ultimate result).

Example: Nothegger, Winter, and Raubal (2004) utilize several environmental as-
pects, including visibility, to yield a landmark saliency measure. In that case, the
paper is considered in this classification to include both saliency and visibility as the
measured aspects.

Pre-existing data: Research that analyzes data from previous studies or experiments
and then also compares it with original data (data collected by the authors specif-
ically for this research) is classified by taking the pre-existing study or studies into
consideration together with the new contribution. That is, in the classification mark
everything that applies either to the original data or the data from previous studies.

Example: Turner and Penn (2002) correlate the results of an artificial agent model
originated in that work to results of a previous study tracking the movement of hu-
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man agents conducted by Hillier et al. (1996). In the classification, this would result
in both artificial and human agent being marked, among others.

The classification scheme

In the explanations of the classification scheme’s elements we will use the terms “space”
and “entity” to refer to elements of the (geographic) area research has been conducted in.
The terms are used according to the following definitions:

e Space: “Space” refers to an area as a whole. This may be on different scales (e.g., a
room, a building, a campus, a city...), but it will usually be the encompassing area.
“Space” may leave the internal structure of that area undefined.

e Entity: “Entity” refers to a specific, distinguishable part of a “space.” This part may
be a specific (geographic) object, such as a piece of furniture within a room, a room
within a building, a building on a campus, or a district of a city. It can also be generic,
referring to a not further specified location within a space.

Elements of the classification scheme

Spatial Measures

Measured aspect The desired attribute of a space or entity, which measures are attempting to
quantify.

e Centrality- Importance of an entity based on its spatial relation with other entities. It
can be established for structured (e.g., networks) and unstructured spaces. Centrality
can be local (based on information of surrounding entities selected by some criteria)
or global (based on information of all entities in a space).

Example: Baran, Rodriguez, and Khattak (2008) compared space syntax measures of
local and global centrality to walking behavior in different neighborhoods.

Asami et al. (2003) sought to identify the most central locations within historic Is-
tanbul. They compared centers found using the space syntax measure of integration
(which derive values for centrality based on the topology of the street network) to
centers identified by experts using a map, by the number of taxi bays in an area, and
by the average number of stories of buildings in an area.

e Saliency- The distinctiveness or identifiability of an entity, relative to other entities.

Example: Nothegger, Winter, and Raubal (2004) developed a model that uses at-
tributes, such as color and facade area, to create a single measure of saliency for
buildings.

e Visibility- The degree of visibility between one or more entities to or from another
entity or set of entities.

Example: Benedikt (1979) created a series of isovist measures to quantify the nature
of visible space around a single point, and proposed methods to quantify visibility
continuously across space.
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e Cost/Complexity- How comprehensible the internal structure of a space is (i.e., how
easy it is to understand a space) or the mental or physical difficulty of traversing
a space (i.e.,, how easy it is to navigate and/or move through a space to a desired
destination). This is often derived from a space’s components.

Example: O’'Neill (1991) was interested in the effect of average intersection complex-
ity on wayfinding task performance in relatively small scale spaces (sections of a li-
brary).

Richter (2009) combined different aspects of a road intersection (such as number of
branches and segment lengths) to define a measure for that intersection’s cognitive
complexity.

How measured? The actual mathematical structure used to derive values, outside the context of
what aspect is being measured.

e Topology- Measures of spatial relationships between entities in terms of connected-
ness or neighborhood without regard for geometric properties like metric distance,
angle, size or shape.

Example: Holscher, Brosamle, and Vrachliotis (2012) identify areas of high centrality,
using space syntax measures, which abstract a space into a graph. This graph ab-
straction allows for the purely topological relationships of the areas within a space
to be quantified, such as how connected they are to other areas, without regard for
geometric properties like metric distance.

e Ordering- Linear/circular order of a finite number of entities, without metric prop-
erties of distance or angle.

Example: Richter (2007) uses circular ordering information of an intersection’s
branches and the position of a landmark object within that order to determine that
landmark’s location relative to a turn at the intersection (e.g., whether a landmark is
located before or after the turn).

e Geometry- Quantitative (numeric) measuring of geometric properties such as shape,
size, angle, and metric distance.

Example: Examples include angular change (Turner 2001, Asami et al. 2003), and
metric distance (Nagar and Tawfik 2007).

Scale This refers to the scale a measure operates on, i.e., whether it operates locally or globally.
Scale does not describe the size (or resolution) of the space.

o Aggregated Entities- Measures that summarize values measured for individual en-
tities into (usually) a single measure for a larger unit (e.g., summarizing measures
for individual intersections to a single measure for the whole route; calculating an
average measure for a larger area from values for individual locations within that
area).

Example: O’Neill’s (1991) global interconnection density (ICD), which summarizes
the complexity of a space based on aggregating the number of decisions available at
all intersections within a space, resulting in a single (average) value for that space.
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e Single Entity- Measures which provide values for individual entities of a space and,

thus, reveal differences between them.

Example: Baran, Rodriguez, and Khattak (2008) use a space syntax graph abstraction
(an axial line map) and centrality measure (integration) to yield a centrality value for
each axial line, which defined segments of a pedestrian path network.

Behavior

Agent Beings whose behavior or actions are observed and compared to spatial measures.

e Natural- Human agents, people used as test subjects.

Example: O’Neill (1991) had graduate and undergraduate students perform wayfind-
ing tasks.

o Artificial- Artificial agents whose actions are intended to approximate human behav-

ior.
Example: Turner and Penn (2002) created an agent-based model where the agents use
visibility information to make movement decisions.

Behavioral data Type of data that captures the behavior of agents in some quantifiable way.

e Recall- Measures how well a space and/or entities within that space are remembered.

This is measured post-hoc, that is, after some task execution. It may be measured on
different levels of spatial knowledge, such as landmark, route, or survey.

Example: Omer and Goldblatt (2007) had human agents mark the location of land-
marks on an incomplete map of a space in which they had previously performed
wayfinding tasks.

e Preference- Indicated preference by agents given a set of choices.

Example: Weisman (1981) had human agents judge a series of highly abstracted floor
plans in terms of their level of general preference for the plan.

e Uncontrolled- Tracking an agent’s decisions without a specific goal imposed upon

the agents by the researchers. The researchers do not measure performance (of any
kind), but simply observe behavior, such as how many agents pass by or enter a
specific location.

Example: Chang (2002) observed pedestrian movement by creating “gates” at par-
ticular points in a physical space and measured how many human agents passed
through them, and secondly, he randomly selected human agents and tracked their
movement through the space.

e Performance- In contrast to “recall” this measures the observable performance dur-

ing task execution, such as time to completion, route optimization, or number of turn-
ing errors.

Example: O’Neill (1991) used human agents in a wayfinding experiment, and mea-
sured their ability to find a predetermined destination in three ways: 1) Time elapsed,
2) Number of backtracks on route, 3) Number of wrong turns.
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Collection How the behavioral data is gathered.

e Experimental- Data recorded by researchers in an experimental study described in
their paper. Researchers manipulate variables, such as the environment participants
operate in, or the kind of information presented to participants, or the kind of partic-
ipants, to observe causal relationships.

Example: O’Neill (1991) conducted an original wayfinding experiment with human
agents. Three portions of a university library were used as test spaces. They were se-
lected to vary in value according to a complexity measure (InterConnected Density-
ICD) based on intersection connectivity. Agents were given a task to locate a par-
ticular intersection within the environment, Their ability to find the intersection was
tracked via the time it took them to find the specified location, how often they back-
tracked on their route, and how often they made suboptimal turns. The average per-
formance in each space was then compared to the measured complexity according to
ICD.

e Non-Experimental- Data that is collected without the controlled manipulation of
variables, such as a survey, an observational study, or census data.

Example: Koohsari et al. (2013) mailed surveys that asked human agents to report
how often they walked to nearby “public open spaces” (i.e., parks) and how much
time they spent doing so.

Environment The way the environment/space is experienced in the study.

e Physical- An actual physical space as it exists in the real world.
Example: O'Neill (1991) had subjects perform tasks in a university library building.
e Virtual- A computer-simulated space which emulates the rules of physical reality,
such as a digital 3D model (“virtual environment”).
Example: Meilinger, Franz, and Biilthoff (2012) had human agents experience a 3D

simulation of a town through a 220° semi-cylindrical screen.

e External Representation- Studies that utilize an (often static) representation of a
space, such as a floorplan, map, or series of photographs, in addition to or instead
of having agents interact in or move within a real or simulated environment.

Example: Asami et al. (2003) had designated experts select local centers in Istanbul
using a map of the city.

O'Neill (1991) had human agents first experience an environment through the use
of a series of photographs in order to familiarize them with the environment before
encountering it directly.

Layout The type of spatial structure or arrangement of the environment.

e Existing- A spatial layout found in the real world that could be encountered in life.

Example: Holscher, Brosamle, and Vrachliotis (2008) had human agents perform
tasks within a pre-existing building (a conference center).
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Meilinger, Franz, and Biilthoff (2012) had human agents experience a virtual model
of the town of Tiibingen, Germany.

e Synthetic- A layout that is designed specifically to test behavioral responses to envi-
ronmental aspects, such as a maze or idealized regular street network.

Example: Dalton (2003) created a virtual, idealized urban form consisting of streets
of all the same length, but a variety of intersection types.

e Multiple- The study compares multiple layouts, i.e., multiple different spaces (or
multiple distinct areas within a space).

Example: O’Neill (1991) compared three different areas within a library which varied
in measured complexity, in order to validate the measure against human behavior.

Human Context A study also tests for characteristics of human agents, such as familiarity, ex-
pertise, sex or individual differences.

Example: Nothegger, Winter, and Raubal (2004) compared landmarks at street inter-
sections as defined by a saliency algorithm to those selected by human agents with
varying degrees of reported familiarity with the space.

. ] ..
° WWW.JOS15.01rg


http://www.josis.org

	Introduction
	Background
	Environmental cognition and spatial measures
	Spatial measures
	The need for a taxonomy
	Visual summaries

	Methods
	Creation of hierarchical categories
	The visual summary diagrams

	Results and discussion
	Category definitions
	Spatial measures
	Behavior

	Considered categories
	Validation of categories
	Example visual summary
	Web-based classification and analysis tool
	Example use cases
	Why not automated text analysis?
	Visual summary design

	Future work

